
10.SRAM 读写实验例程说明

10.1 PGX-Nano开发板简介

PGX-Nano 开 发 板 搭 载 了 一 颗 2Mbit 的 16 位 宽 SRAM ， 型 号 为

IS61WV12816DBLL-10TLI。此型号 SRAM 不需要时钟，只需使信号满足相应时序

要求与状态保持时间，即可完成数据的存取操作。

10.2 实验目的

实验在 SRAM的 17’h00000 地址位置的低字节写入 8bit数据，按下 S1 按键为

写入；再按下 S2按键读出 17’h00000地址位置低字节的 8bit数据，led 灯显示读

出的 8bit数据。按下 S0进行复位操作。

10.3 实验原理

此型号 SRAM 共有 5 个控制信号，16 位数据信号，17 位地址信号（开发板

原理图对 SRAM预留了 19 位地址信号，但最高位与次高位两位地址信号无效）。

关于 IS61WV12816DBLL10TLI 的详细描述请参考 IS61WV12816DBLL 数据手册

（-10表示访问时间 10ns）。

控制信号共有 5个，均为低电平有效入下表所示：

信号名称 信号描述

CE 片选信号

WE 写使能信号

OE 输出使能信号

LB 低字节控制信号

UB 高字节控制信号

有关控制信号与数据信号的真值表如下图所示：

分析上表所知：

SRAM写状态对应控制信号电平如下表所示（0表示低电平，1表示高电平）：

信号 WE CE OE

电平 0 0 1

此时，SRAM将数据存入地址信号对应位置。

SRAM读状态对应控制信号电平如下表所示：

信号 WE CE OE

电平 1 0 0

此时，SRAM将地址信号对应位置数据取出。

如果需要控制低字节\高字节输出、低字节\高字节输入，则就需要使用 LB、

HB 两个控制信号，LB 为低电平时，数据的低字节可以存入 SRAM，或者地址信

号对应位置数据的低字节可以取出，同理，HB 为低电平时，数据的高字节可以

可以存入 SRAM，或者地址信号对应位置数据的高字节可以取出。

取出\存入 16bit完整数据时：

信号 LB HB

电平 0 0

仅取出\存入低 8bit数据时：

信号 LB HB

电平 0 1

仅取出\存入高 8bit数据时：

信号 LB HB

电平 1 0

在对 SRAM进行读写操作时，因为此型号 SRAM不需要时钟，所以相关信号

需要满足指定的时间条件才能对 SRAM 进行读写操作。详细描述请参考

IS61WV12816DBLL数据手册。

板卡晶振为 50MHz，周期为 20ns，此型号 SRAM 的访问时间时 10ns，因此

通过查阅 SRAM数据手册可知，控制 SRAM 控制信号在一个时钟周期内保持相应

电平，即可满足时间条件与时序要求；例如在一个时钟周期内将 CE、WE 信号拉

低（LB、HB 依据情况拉高或拉低，OE 信号拉高），即可将数据写入 SRAM 对应

地址位置；在一个时钟周期内将 CE、OE 信号拉低（LB、HB 依据情况拉高或拉低，

WE信号拉高），即可读出 SRAM 对应地址位置的数据。

10.4 实验源码设计

顶层：在按键 S1 按下时，向 SRAM 写入数据，当 S2 按键按下时，向 SRAM

读出数据。

module sram_test(
input sys_clk ,
input rst_n ,
input [1:0]key ,
output [7:0]led /* synthesis PAP_MARK_DEBUG="true" */,
output sram_oe /* synthesis PAP_MARK_DEBUG="true" */,
output sram_ce /* synthesis PAP_MARK_DEBUG="true" */,
output sram_we /* synthesis PAP_MARK_DEBUG="true" */,
output sram_ub /* synthesis PAP_MARK_DEBUG="true" */,
output sram_lb /* synthesis PAP_MARK_DEBUG="true" */,
output [16:0]sram_addr /* synthesis PAP_MARK_DEBUG="true" */,
inout [15:0]sram_data /* synthesis PAP_MARK_DEBUG="true" */

);

wire [16:0]data_dbyte ;
reg wr_en ;
wire [16:0]wr_addr ;
wire [15:0]wr_data ;
reg rd_en /* synthesis PAP_MARK_DEBUG="true" */;
wire [16:0]rd_addr /* synthesis PAP_MARK_DEBUG="true" */;
wire [15:0]rd_data /* synthesis PAP_MARK_DEBUG="true" */;
wire rd_data_en /* synthesis PAP_MARK_DEBUG="true" */;
wire busy ;

wire busy_end ;
wire [1:0]key_sig /* synthesis PAP_MARK_DEBUG="true" */;
reg [1:0]key_sig_reg /* synthesis PAP_MARK_DEBUG="true" */;
reg [7:0]led_reg ;

btn_deb_fix#(
.BTN_WIDTH (4'd2) ,
.BTN_DELAY (20'h8_3F7C)

)u_btn_deb_fix
(

.clk (sys_clk) ,

.btn_in (key) ,

.btn_deb (key_sig)
);

always @(posedge sys_clk)begin
if (~rst_n) begin

key_sig_reg <= 2'b0 ;
end else begin

key_sig_reg <= key_sig ;
end end

always @(posedge sys_clk) begin
if (~rst_n) begin

wr_en <= 1'b0 ;
rd_en <= 1'b0 ;

end else if ((~key_sig[0]) & (key_sig_reg[0])) begin
wr_en <= 1'b1 ;
rd_en <= 1'b0 ;

end else if ((~key_sig[1]) & (key_sig_reg[1])) begin
wr_en <= 1'b0 ;
rd_en <= 1'b1 ;

end else begin
wr_en <= 1'b0 ;
rd_en <= 1'b0 ;

end end

assign wr_data = {8'b0 ,8'b1010_1010} ;

sram_dri #(
.clk_frequency (27'd27_000_000) //sram max 100MHz

// parameter data_dbyte = 12'd1280
)my_sram_dri(

.clk (sys_clk) ,

.rst_n (rst_n) ,

.data_dbyte (17'd1),

.wr_en (wr_en),

.wr_addr (17'b0),

.wr_data (wr_data),

.wr_lub (2'b10),

.rd_en (rd_en),

.rd_addr (17'b0),

.rd_data (rd_data),

.rd_data_en (rd_data_en),

.rd_lub (2'b10),

.busy (busy),

.busy_end (busy_end),

.sram_oe (sram_oe),

.sram_ce (sram_ce),

.sram_we (sram_we),

.sram_ub (sram_ub),

.sram_lb (sram_lb),

.sram_addr (sram_addr),

.sram_data (sram_data)
);
always @(posedge sys_clk) begin

if (~rst_n)
led_reg <= 7'd0 ;

else if (rd_data_en)
led_reg <= rd_data[7:0] ;

end
assign led = led_reg ;
endmodule

SRAM驱动模块：对 SRAM 进行写操作时，拉低 WE、CE 信号。

对 SRAM进行读操作时，拉低 OE、CE 信号。

`timescale 1ns / 1ps
`define UD #1

module sram_dri #(
parameter clk_frequency = 27'd100_000_000 //sram max 100MHz

// parameter data_dbyte = 12'd1280
)(

input clk ,
input rst_n ,
input [16:0]data_dbyte ,
input wr_en ,

input [16:0]wr_addr ,
input [15:0]wr_data ,
input [1:0]wr_lub ,//write data active low
input rd_en /* synthesis PAP_MARK_DEBUG="true" */,
input [16:0]rd_addr /* synthesis PAP_MARK_DEBUG="true" */,
output reg [15:0]rd_data /* synthesis PAP_MARK_DEBUG="true" */,
output reg rd_data_en /* synthesis PAP_MARK_DEBUG="true" */,
input [1:0]rd_lub ,//read data active low
output busy ,
output busy_end ,
output reg sram_oe /* synthesis PAP_MARK_DEBUG="true" */,
output reg sram_ce ,
output reg sram_we /* synthesis PAP_MARK_DEBUG="true" */,
output reg sram_ub ,
output reg sram_lb ,
output [16:0]sram_addr /* synthesis PAP_MARK_DEBUG="true" */,
inout [15:0]sram_data /* synthesis PAP_MARK_DEBUG="true" */

);

reg wr_en_reg1 /* synthesis PAP_MARK_DEBUG="true" */;
reg wr_en_reg2 /* synthesis PAP_MARK_DEBUG="true" */;

wire wr_rise ;

reg [15:0] wr_data_reg1 /* synthesis PAP_MARK_DEBUG="true" */;
reg [15:0] wr_data_reg2 /* synthesis PAP_MARK_DEBUG="true" */;
reg [15:0] wr_data_reg3 /* synthesis PAP_MARK_DEBUG="true" */;
reg [15:0] wr_data_reg4 /* synthesis PAP_MARK_DEBUG="true" */;

reg [16:0] wr_addr_reg1 /* synthesis PAP_MARK_DEBUG="true" */;
reg [16:0] wr_addr_reg2 /* synthesis PAP_MARK_DEBUG="true" */;
reg [16:0] wr_addr_reg3 /* synthesis PAP_MARK_DEBUG="true" */;
reg [16:0] wr_addr_reg4 /* synthesis PAP_MARK_DEBUG="true" */;

reg [1:0] wr_lub_reg1 ;
reg [1:0] wr_lub_reg2 ;
reg [1:0] wr_lub_reg3 ;
reg [1:0] wr_lub_reg4 ;
reg [1:0] rd_lub_reg1 ;
reg [1:0] rd_lub_reg2 ;
reg [1:0] rd_lub_reg3 ;
reg [1:0] rd_lub_reg4 ;

reg rd_en_reg1 ;

reg rd_en_reg2 ;
reg rd_en_reg3 ;
reg rd_en_reg4 ;

wire rd_rise /* synthesis PAP_MARK_DEBUG="true" */;

reg [16:0] rd_addr_reg1 ;
reg [16:0] rd_addr_reg2 ;
reg [16:0] rd_addr_reg3 ;
reg [16:0] rd_addr_reg4 ;
reg rd_data_en_reg ;

wire [15:0] sram_data_out /* synthesis PAP_MARK_DEBUG="true" */;

reg [16:0] cnt_dbyte /* synthesis PAP_MARK_DEBUG="true" */;
reg flag_end /* synthesis PAP_MARK_DEBUG="true" */;

assign sram_data_out = sram_data ;

assign sram_data = (sram_we == 1'b0)? wr_data_reg3 : 16'hz ;

assign sram_addr = (sram_we == 1'b0)? wr_addr_reg3 : rd_addr_reg3 ;

always @(posedge clk) begin
if (~rst_n) begin

wr_en_reg1 <= 1'b0 ;
wr_en_reg2 <= 1'b0 ;

end
else begin

wr_en_reg1 <= wr_en ;
wr_en_reg2 <= wr_en_reg1 ;

end
end

assign wr_rise = ((wr_en_reg1)&&(~wr_en_reg2)) ;

always @(posedge clk) begin
if(~rst_n) begin

wr_data_reg1 <= 16'd0 ;
wr_data_reg2 <= 16'd0 ;
wr_data_reg3 <= 16'd0 ;
wr_data_reg4 <= 16'd0 ;

end
else begin

wr_data_reg1 <= wr_data ;
wr_data_reg2 <= wr_data_reg1 ;
wr_data_reg3 <= wr_data_reg2 ;
wr_data_reg4 <= wr_data_reg3 ;

end
end

always @(posedge clk) begin
if(~rst_n) begin

wr_addr_reg1 <= 17'd0 ;
wr_addr_reg2 <= 17'd0 ;
wr_addr_reg3 <= 17'd0 ;
wr_addr_reg4 <= 17'd0 ;

end
else begin

wr_addr_reg1 <= wr_addr ;
wr_addr_reg2 <= wr_addr_reg1 ;
wr_addr_reg3 <= wr_addr_reg2 ;
wr_addr_reg4 <= wr_addr_reg3 ;

end
end

always @(posedge clk) begin
if(~rst_n) begin

wr_lub_reg1 <= 2'd0 ;
wr_lub_reg2 <= 2'd0 ;
wr_lub_reg3 <= 2'd0 ;
wr_lub_reg4 <= 2'd0 ;
rd_lub_reg1 <= 2'd0 ;
rd_lub_reg2 <= 2'd0 ;
rd_lub_reg3 <= 2'd0 ;
rd_lub_reg4 <= 2'd0 ;

end
else begin

wr_lub_reg1 <= wr_lub ;
wr_lub_reg2 <= wr_lub_reg1 ;
wr_lub_reg3 <= wr_lub_reg2 ;
wr_lub_reg4 <= wr_lub_reg3 ;
rd_lub_reg1 <= rd_lub ;
rd_lub_reg2 <= rd_lub_reg1 ;
rd_lub_reg3 <= rd_lub_reg2 ;
rd_lub_reg4 <= rd_lub_reg3 ;

end
end

always @(posedge clk) begin
if (~rst_n) begin

rd_en_reg1 <= 1'b0 ;
rd_en_reg2 <= 1'b0 ;
rd_en_reg3 <= 1'b0 ;
rd_en_reg4 <= 1'b0 ;
rd_data_en <= 1'b0 ;

end
else begin

rd_en_reg1 <= rd_en ;
rd_en_reg2 <= rd_en_reg1 ;
rd_en_reg3 <= rd_en_reg2 ;
rd_en_reg4 <= rd_en_reg3 ;
rd_data_en_reg <= ~sram_oe ;
rd_data_en <= rd_data_en_reg ;

end
end

assign rd_rise = ((rd_en_reg1)&&(~rd_en_reg2)) ;

always @(posedge clk) begin
if(~rst_n) begin

rd_addr_reg1 <= 17'd0 ;
rd_addr_reg2 <= 17'd0 ;
rd_addr_reg3 <= 17'd0 ;
rd_addr_reg4 <= 17'd0 ;

end
else begin

rd_addr_reg1 <= rd_addr ;
rd_addr_reg2 <= rd_addr_reg1 ;
rd_addr_reg3 <= rd_addr_reg2 ;
rd_addr_reg4 <= rd_addr_reg3 ;

end
end

always @(posedge clk) begin
if (~rst_n)

rd_data <= 16'd0 ;
else if (rd_data_en_reg)

rd_data <= sram_data_out ;
else

rd_data <= rd_data ;
end

//---------------------------state----------------------------------//

reg [3:0]state /* synthesis PAP_MARK_DEBUG="true" */;

parameter idle = 4'b0001 ;
parameter write = 4'b0010 ;
parameter read = 4'b0100 ;
parameter state_end = 4'b1000 ;

always @(posedge clk) begin
if (~rst_n)

state <= idle ;
else begin case (state)

idle : begin
if (wr_rise)

state <= write ;
else if (rd_rise)

state <= read ;
else

state <= idle ;
end
write : begin

if (flag_end)
state <= state_end ;

else
state <= write ;

end
read : begin

if (flag_end)
state <= state_end ;

else
state <= read ;

end
state_end:begin

state <= idle ;
end
default: state <= idle ;

endcase end
end

always @(posedge clk) begin
if (~rst_n)begin

sram_oe <= 1'b1 ;

sram_ce <= 1'b1 ;
sram_we <= 1'b1 ;

end
else if ((state == write)&&(!flag_end))begin

sram_oe <= 1'b1 ;
sram_ce <= 1'b0 ;
sram_we <= 1'b0 ;

end
else if ((state == read)&&(!flag_end))begin

sram_oe <= 1'b0 ;
sram_ce <= 1'b0 ;
sram_we <= 1'b1 ;

end
else begin

sram_oe <= 1'b1 ;
sram_ce <= 1'b1 ;
sram_we <= 1'b1 ;

end
end

always @(posedge clk) begin
if (~rst_n)begin

sram_lb <= 1'b1 ;
sram_ub <= 1'b1 ;

end
else if ((state == write)&&(!flag_end))begin

sram_lb <= wr_lub_reg4[0] ;
sram_ub <= wr_lub_reg4[1] ;

end
else if ((state == read)&&(!flag_end))begin

sram_lb <= rd_lub_reg4[0] ;
sram_ub <= rd_lub_reg4[1] ;

end
else begin

sram_lb <= 1'b1 ;
sram_ub <= 1'b1 ;

end
end

always @(posedge clk) begin
if (~rst_n)

cnt_dbyte <= 17'd0 ;
else if (flag_end)

cnt_dbyte <= 17'd0 ;

else if (((state == write)||(state == read))&&(~sram_ce))
cnt_dbyte <= cnt_dbyte + 17'd1 ;

else
cnt_dbyte <= 17'd0 ;

end

always @(posedge clk) begin
if (~rst_n)

flag_end <= 1'b0 ;
else if (cnt_dbyte == data_dbyte - 17'd2)

flag_end <= 1'b1 ;
else

flag_end <= 1'b0 ;
end

assign busy = (state != idle)? 1'b1 : 1'b0 ;
assign busy_end = (state == state_end)? 1'b1 : 1'b0 ;
endmodule

按键消抖模块：不再过多赘述。

10.5 实验现象

按下S1按键在 SRAM的17’h00000地址位置写入16bit数据0000_0000_1010_1010

；再按下 S1按键读出 17’h00000地址位置的 16bit数据 0000_0000_1010_1010；

LED0、LED2、LED4、LED6灯灭、LED1、LED3、LED5、LED7 灯亮。

按下 S3使 LED 恢复为全灭状态。

	10.SRAM读写实验例程说明
	10.1PGX-Nano开发板简介
	10.2实验目的
	10.3实验原理
	10.4实验源码设计
	10.5实验现象

