10.SRAM £ 5 2L HFE Ui BA

10.1 PGX-Nano FF & faifr

PGX-Nano JT K ® 45 # 17 — Bl 2Mbit) 16 {7 %8 SRAM , T 5 K
IS61WV12816DBLL-10TLI. 75 SRAM AT N 4, R FHE 15 50 & AH NI 7
R IR R ERN], B AT 58 e (K A7 B

10.2 LI HK

SEIGTE SRAM 1) 17°h00000 Huhik£f7 & FOMK 7215 5 N 8bit FdiE, #4 T~ S1 #4488
BN, BEiR S2 #48tH 177h00000 k£ B K511 8bit FidE, led T S ik
H I 8bit Bl . 1% F SO #EATEALERAE.

10.3 LR

S SRAM JEA 5 MEHIE S, 16 M EHEE S, 17 MHkES OF AR
JRELEIRT SRAM FUEE 1 19 fisbhilfE %, H &b 5 s b A ik E 5 820 .

KT 1S61WV12816DBLLIOTLI Y TE4H iR 17 2% 1S61WV12816DBLL # 4k T-/1it
(-10 FRIRVG I [E] 10ns) .

EHMESIH 54, BIOMREFEA BN T RIR:
ERCE Y (EREE %)

CE (s
WE EififefE 5
OE LRSS
LB KETERES
uB NG S

A REHE T HEIEE T I EAERL T EIFR:

TRUTH TABLE

I/0 PIN
Mode WE CE OE B 0B VOO-/07 1/08-VO15 VobCurrent
Not Selected X H X X X High-Z High-Z IsB1, IsB2
Output Disabled H L H X X High-Z High-Z lcc
X L X H H High-Z High-Z
Read H L L L H Dour High-Z lec
H L I H IL High-Z Dout
H L L L L Dour Dout
Write I L X L H Din High-Z lec
L L X H L High-Z Din
lit L X L L Din D
GrHT ERET A
SRAM BDIRZ S R HIE 5 H-F a0 N R PR (0 R il P, 1 FoRE)
=5 WE CE OE
S 0 0 1
G, SRAM 404 A7 A HhEAS S0 Rifr &
SRAM AR ZS X 45 il (5 5 B P40 R s :
=5 WE CE OE
S 1 0 0

IS, SRAM K HihEAS 556 Az B A R B .

A SRR E AR NS T AR\ E RO, Wt R A A LB,
HB P NEHIE S, LB KPR, HE 1737 LAE N SRAM, B HhiE (5
St A B B AR TR DL, B, HB AT, B v AT B
A LLTEN SRAM, - Bk 3 b5 5 o) 77 B 40005 10 7 1 /) AR

HUHINTE 16bit SEEEHHR I -

55 LB HB

P 0 0

AHUHE N\ NI 8bit T -

=5 LB HB

P 0 1

IEUH\AE T 8bit $HE T

55 LB HB

FEF 1 0

TEXT SRAM BHAT IR S /ERS, [RUALERYS SRAM TR BN 40, B ES
T L AL A E I R 5 A RE 6T SRAM HEATEE S B . VEMTE IR IE S
1S61WV12816DBLL %4 TF-/ift -

PR B3R 50MHz, JHAA 20ns, UEAY 5 SRAM [V [l (] IF 10ns, BA] G
I A SRAM HHE T AT %0, #2581 SRAM 8 {5 5 8 — AN i 7 19 P4 AR 5 4 2
FSF, BTG 2 I E) SRR S I e K 9 A — I B R B R CEL WE {5 5L
& (LB. HB KB AEEHK, OEfE5Him) , RInlKEdES N SRAM X M
HHEA B E— NI E P CEL OF {5 S A% (LB HB AR HE 1 i hi s BRI,
WE {55 Him) , BEPATEEH SRAM X R bbb B 258 .

10.4 LIRS

TR: (i s1 % FIF, [SRAM S5 ANEHE, 24 S2 %48 4% NI, [A] SRAM
B H s .

sram_test(

sys_clk
rst_n
[1:0]key
[7:0]1led
sram_oe
sram_ce
sram_we
sram_ub
sram_1b
[16:0@]sram_addr
[15:0]sram_data

[16:0]data_dbyte ;
wr_en ;
[16:0]wr_addr ;
[15:0]wr_data ;
rd_en
[16:0]rd_addr
[15:0]rd _data
rd_data_en

busy ;

busy end
[1:0]key sig
[1:0]key_sig reg
[7:0]1led _reg ;

#(
.BTN_WIDTH (4'd2)
.BTN_DELAY (20'h8_3F7C)

.clk (sys_clk) ,
.btn_in CE
.btn_deb (key_sig)

@(sys_clk)
(~rst_n)
key_sig reg <= 2'bo ;

key sig reg <= key sig ;

always @(posedge sys_clk) begin

if (~rst_n) begin
wr_en <= 1'b0 ;
rd_en <= 1'b0 ;
((~key_sig[@]) & (key_sig_reg[@]))
wr_en <= 1'bl ;
rd_en <= 1'b0 ;
((~key_sig[1]) & (key_sig_reg[1]))
wr_en <= 1'b0 ;
rd_en <= 1'bl ;

wr_en <= 1'b0 ;
rd_en <= 1'b0 ;
assign wr_data = {8'bo ,8'blele 1010} ;
#(

.clk_frequency (27'd27_000_000)

(sys_clk

.rst_n (rst_n
.data_dbyte (17'd1
.Wr_en (wr_en
.wr_addr (17 'bo
.wr_data (wr_data
.wr_lub (2'blo
.rd_en (rd_en
.rd_addr (17 'bo
.rd_data (rd_data
.rd_data_en (rd_data_en
.rd_lub (2'blo)
.busy (busy),
.busy_end (busy end),
.sram_oe (sram_oe),
.sram_ce (sram_ce),
.sram_we (sram_we),
.sram_ub (sram_ub),
.sram_1lb (sram_1b),
.sram_addr (sram_addr),
.sram_data (sram_data)

@(sys_clk)

(~rst_n)

led _reg <= 7'do ;
(rd_data_en)

led_reg <= rd_data[7:0] ;

led = led_reg ;

SRAM IRZNHEH: X} SRAM AT 5 #AERT, Hi{K WE. CEfE 5.

%F SRAM BEATEE#ERS, $ifk OE. CE %5,
ins / 1ps
UD #1

sram_dri #(
clk frequency = 27'd100 000 000

clk s
rst_n 9
[16:0]data_dbyte ,
wr_en ,

[16:0]wr_addr
[15:0]wr_data
[1:0]wr_lub
rd_en
[16:0]rd_addr
[15:0]rd_data
rd_data_en
[1:0]rd_lub
busy
busy end
sram_oe
sram_ce
sram_we
sram_ub
sram_1b
[16:0]sram_addr
[15:0]sram_data

wr_en_regl
wr_en_reg2

wr_rise ;

[15:0] wr_data_regl
[15:0] wr_data_reg2
[15:0] wr_data_reg3
[15:0] wr_data_reg4d

[16:0] wr_addr_regl
[16:0] wr_addr_reg2
[16:0] wr_addr_reg3
[16:0] wr_addr_reg4d

[1:0] wr_lub_regl ;
[1:0] wr_lub_reg2 ;
[1:0] wr_lub_reg3 ;
[1:0] wr_lub_regsd ;
[1:0] rd_lub_regl ;
[1:0] rd_lub_reg2 ;
[1:0] rd_lub_reg3 ;
[1:0] rd_lub_regsd ;

rd_en_regl ;

rd_en_reg2 ;
rd_en_reg3 ;
rd_en_regd ;

rd_rise

[16:0] rd_addr_regl ;
[16:0] rd_addr_reg2 ;
[16:0] rd_addr_reg3 ;
[16:0] rd_addr_reg4 ;
rd_data_en_reg ;

[15:08] sram_data_out

[16:0] cnt_dbyte
flag end

sram_data_out = sram_data ;

sram_data (sram_we == 1'b@®)? wr_data_reg3 : 16'hz ;
sram_addr (sram_we == 1'b@®)? wr_addr_reg3 : rd_addr_reg3 ;
@(clk)

(~rst_n)

wr_en_regl <= 1'b0 ;
wr_en_reg2 <= 1'b0 ;

wr_en_regl <= wr_en ;
wr_en_reg2 <= wr_en_regl ;

wr_rise = ((wr_en_regl)&&(~wr_en_reg2)) ;

@(clk)

(~rst_n)
wr_data_regl <= 16'd0 ;
wr_data_reg2 <= 16'd0 ;
wr_data_reg3 <= 16'd0o ;
wr_data_regd <= 16'd0o ;

wr_data_regl wr_data ;

wr_data_reg2 wr_data_regl ;
wr_data_reg3 wr_data_reg2 ;

wr_data_reg4 wr_data_reg3 ;

@(clk)

(~rst_n)
wr_addr_regl
wr_addr_reg2
wr_addr_reg3
wr_addr_reg4

wr_addr_regl wr_addr ;

wr_addr_reg2 wr_addr_regl ;
wr_addr_reg3 wr_addr_reg2 ;

wr_addr_reg4 wr_addr_reg3 ;

@(clk)
(~rst_n)
wr_lub_regil

wr_lub_reg2
wr_lub_reg3
wr_lub_reg4d
rd_lub_regl
rd_lub_reg2
rd_lub_reg3
rd_lub_reg4

wr_lub_regil
wr_lub_reg2
wr_lub_reg3
wr_lub_reg4d
rd_lub_regl
rd_lub_reg2
rd_lub_reg3
rd_lub_reg4

wr_lub ;

wr_lub_regl ;
wr_lub_reg2 ;
wr_lub_reg3 ;

rd_lub ;

rd_lub_regl ;
rd_lub_reg2 ;
rd_lub_reg3 ;

@(clk)
(~rst_n)
rd_en_regl
rd_en_reg2
rd_en_reg3
rd_en_reg4
rd_data_en

rd_en_regl rd_en ;
rd_en_reg2 rd_en_regl ;
rd_en_reg3 rd_en_reg2 ;
rd_en_regd <= rd_en_reg3 ;
rd_data_en_reg <= ~sram_oe ;
rd_data_en <= rd_data_en_reg ;

rd_rise = ((rd_en_regl)&&(~rd_en_reg2)) ;

@(clk)

(~rst_n)
rd_addr_regl

rd_addr_reg2
rd_addr_reg3
rd_addr_reg4

rd_addr_regl rd_addr ;

rd_addr_reg2 rd_addr_regl ;
rd_addr_reg3 rd_addr_reg2 ;
rd_addr_reg4d rd_addr_reg3 ;

@(clk)

(~rst_n)

rd_data <= 16'de ;
(rd_data_en_reg)

rd_data <= sram_data_out ;

rd_data <= rd_data ;

[3:0]state

idle = 4'bo00O1 ;
write = 4'bo010 ;
read = 4'b0100 ;
state_end = 4'blo00 ;

@(clk)
(~rst_n)
state <= idle ;
(state)
idle
(wr_rise)
state <= write ;
(rd_rise)
state <= read ;

state <= idle ;
write

(flag_end)

state <= state_end ;

state <= write ;

(flag_end)

state <= state_end ;

state <= read ;

state_end:
state <= idle ;

state <= idle ;

end

always @(posedge clk) begin

if (~rst_n)begin
sram_oe <= 1'bl ;

sram_ce <= 1'bl ;
sram_we <= 1'bl ;

((state == write)&&(!flag end))
sram_oe <= 1'bl ;
sram_ce <= 1'bo ;
sram_we <= 1'b0 ;

((state == read)&&(!flag end))
sram_oe <= 1'b0 ;
sram_ce <= 1'b0 ;
sram_we <= 1'bl ;

sram_oe
sram_ce
sram_we

@(clk)
(~rst_n)
sram_lb <= 1'bl ;
sram_ub <= 1'bl ;

((state == write)&&(!flag end))

sram_1b <= wr_lub_reg4[@0] ;

sram_ub <= wr_lub_regd[1] ;

((state == read)&&(!flag end))
sram_1b <= rd_lub_reg4[@0] ;
sram_ub <= rd_lub_regd[1] ;

sram_lb <= 1'bl ;
sram_ub <= 1'bl ;

@(clk)

(~rst_n)

cnt_dbyte <= 17'do ;
(flag_end)

cnt_dbyte <= 17'do ;

(((state == write)||(state == read))&&(~sram_ce))
cnt_dbyte <= cnt_dbyte + 17'd1l ;

cnt_dbyte <= 17'do ;
@(clk)

(~rst_n)
flag end <= 1'b0 ;

(cnt_dbyte == data_dbyte - 17'd2)
flag _end <= 1'bl ;

flag end <= 1'b0 ;

busy = (state != idle)? 1'bl : 1'b0O ;
busy end = (state == state_end)? 1'bl : 1'bo ;

B PR AR 2 B0A.

10.5 LRI Z

¥4 S1 4288 7E SRAM [17°h00000 kit £7 & 5 A 16bit 4% 0000_0000_1010_1010
s FRH%T S1 #EeEE H 17/h00000 kA7 B 1) 16bit (4 0000_0000_1010_1010;
LEDO. LED2. LED4. LED6 #J°K. LED1. LED3. LED5. LED7 4] 5%

¥R S3 4% LED WK A4 KARES -

ceamEmEm oo 8l

"

]

	10.SRAM读写实验例程说明
	10.1PGX-Nano开发板简介
	10.2实验目的
	10.3实验原理
	10.4实验源码设计
	10.5实验现象

