
1 / 14

21.DS18B20 温度传感器使用实验例程

21.1. 实验目的

使用盘古 PGX-Nano开发板驱动 DS18B20 模块读取温度并通过串口打印输出

21.2. 实验简介

21.2.1. DS18B20模块介绍

DS18B20 是一种数字温度传感器，支持单线通信协议，这意味着它只需要一根数

据线与 FPGA 通讯仅需占用一个 I/O 端口，无须任何外部元件，直接将环境温度

转化成数字信号，以数字码方式串行输出，从而大大简化了传感器与 FPGA 的接

口设计。极大地简化了温度测量系统的连接复杂性。DS18B20 具有唯一的 64位

ROM 地址，允许在单根数据线上连接多个传感器，实现多点温度测量。此外，

它还支持寄生电源模式，可以在数据线供电的情况下工作，进一步简化了系统设

计。由于其可靠的性能、低功耗、高精度以及易于集成的特点，DS18B20 被广泛

应用于各种温度监控和数据采集系统中，如家庭自动化、工业控制和环境监测等。

模块引脚定义如下：

其中用户只需要对 D0 口进行操作即可

DS18B20 测温范围从-55°C 到+125°C，在-10°C 到+85°C 的范围内，精度可达

±0.5°C。现场（实时）温度直接以“单总线” 的数字方式传输，大大提高了

系统的抗干扰性。它能直接读出被测温度，并且可根据实际要求通过简单的编程

实现 9~l2 位的数字值读数方式。其芯片内部框图如下:



2 / 14

其中高速缓存器结构示意图如下：

  DS18B20 的高速缓冲器是一个临时存储温度测量数据和配置参数的小型存

储器，用于在温度转换和数据通信过程中缓存必要的信息。由上图可知缓冲器由

9 个字节组成，其中包括测量的温度数据（前两个字节）、配置寄存器（第四个

字节）、以及内部保留位等。用户可通过配置寄存器设置分辨率，而其他字节中

的特定位被保留用于内部用途，不可写入。在配置寄存器的 8个比特位中，只有

第 5位（R0）与第 6位（R1）可以由用户配置，其他位都保留给 DS18B20 内部使

用。R0 与 R1 的组合决定了传感器的分辨率，以及温度转换所需的时间。它们的

作用可以理解为配置选项的二进制编码开关，通过不同的值组合实现分辨率的选

择。详情请看下面的图片：

21.2.2.DS18B20通讯时序

（1）DS18B20 总线复位时序



3 / 14

  控制器与 DS18B20 所有的通信都是由初始化开始的，初始化由主设备发出的

复位脉冲及 DS18B20 响应的存在脉冲组成。当 DS18B20 响应复位信号的后，向主

设备表明其在该总线上，并且已经做好了执行命令的准备。在这个过程中，总线

上的主设备需要拉低总线最少 480us 来表示发送复位脉冲。发送完之后，主设

备要释放总线进入接收模式。当总线释放后，上拉电阻将总线拉至高电平。当

DS18B20检测到该上升沿信号后，其等待15us至60us后将总线拉低60us至240us

来实现发送回复。其具体时序图如下：

（2）DS18B20 总线写时序

  在写过程中写入数据有两种情况：写“1”和写“0”。写两种数据需要遵循

不同的时序。当主设备将总线从高电平拉至低电平时，启动写操作，所有的写操

作持续时间最少为 60us，每个写操作间的恢复时间最少为 1us。当总线（DQ）拉

低后，DS18B20 在 15us 至 60us 之间对总线进行采样，如果采的 DQ 为高电平则

发生写 1，如果为低电平则发生写 0，如下图所示（图中的总线控制器即为主设

备）。如果主机要写 1，必须先将总线拉至逻辑低电平然后释放总线，允许总线

在写操作开始后 15us 内上拉至高电平。若要写 0，必须将总线拉至逻辑低电平

并保持不变最少 60us。

（3）DS18B20 总线读时序

  同样的在读过程中也有有两种情况：读出“1”和读出“0”。每个读时序最

小有 60us 的持续时间以及每个读时序之间有 1us 的恢复时间。当主设备将总

线从高电平拉至低电平超过 1us，启动读操作。当启动读操作后，DS18B20 将会

向主设备发送“0”或者“1”。DS18B20 通过将总线拉高来发送 1，将总线拉低



4 / 14

来发送 0。当读时隙完成后，DQ 引脚将通过上拉电阻将总线拉高至高电平的闲

置状态。从 DS18B20 中输出的数据在启动读时隙后的 15us 内有效，所以，主

设备在读时隙开始后的 15us 内必须释放总线，并且对总线进行采样。其具体时

序图如下：

21.2.3.DS18B20通讯过程

 操作 DS18B20 需要三个步骤，分别是初始化、写 ROM 命令、写功能命令。其具

体解释如下：

1.初始化

  总线上的所有事件都必须以初始化为开始。初始化信号由总线上的主设备发

出的复位脉冲以及紧跟着从设备回应的存在脉冲构成。该存在脉冲是让总线主设

备知道 DS18B20 在总线上并准备好运行。具体的时序在 19.2.2 中 DS18B20 总线

复位时序小节有具体介绍。

2.写 ROM 命令

  在初始化完成后，可以执行 ROM 命令，这些命令用于操作每个设备的 64 位

ROM 编码，帮助主设备在总线上识别和管理多个从设备。ROM 命令共有 5种，每

种命令长度均为 8位，具体如下：

(1)搜索 ROM [F0h]

  在系统上电初始化后，主设备使用该命令识别总线上的所有从设备及其 ROM

编码，从而确定从设备的类型和数量。

(2)读 ROM [33h]

  该命令允许主设备读取 DS18B20 的 64 位 ROM 编码，仅在总线上只有一个

DS18B20 时可用。若总线上存在多个从设备，使用此命令将导致所有设备同时响

应，从而引起数据冲突。

(3)匹配 ROM [55h]

  此命令后接 64 位 ROM 编码，用于在多点总线中定位特定的 DS18B20。只有

编码与指定 ROM 完全匹配的设备会响应，其他设备将等待下一个复位脉冲。该命

令可在单点或多点总线上使用。

(4)跳过 ROM [CCh]

  该命令允许主设备跳过 64 位 ROM 编码直接执行下一步操作，适用于单点总

线（只有一个 DS18B20）的情况（本次实验就是此种情况），可节省时间。但在



5 / 14

多点总线中，若发送跳过 ROM 命令后执行读操作，则所有从设备将同时响应，导

致数据冲突。

(5)警报搜索 [ECh]

  此命令功能类似跳过 ROM，但只有温度超出报警阈值（高于 TH 或低于 TL）

的从设备会响应。报警状态会持续保留，直到温度回到正常范围或掉电为止。

3.写功能命令

  当主设备通过 ROM 命令确认某个 DS18B20 可以通信后，便可向目标从设备

发送功能命令，以执行特定操作。以下是 DS18B20 的功能命令及其作用：

(1)温度转换 [44h]

  该命令用于启动单次温度转换，完成后，转换结果会存储在高速缓存器的

byte0（温度低 8位）和 byte1（温度高 8位）中，随后 DS18B20 进入低功耗闲

置状态。若总线在命令后发出读时隙，DS18B20 会返回：

    "0"：表示温度转换尚未完成。

    "1"：表示温度转换已完成。

  寄生电源模式注意事项：在发送该命令后，必须立即强制拉高总线，且拉高

时间需满足时序要求。

(2)写入暂存器 [4Eh]

  此命令允许主设备向高速缓存器写入 3个字节数据，按顺序写入以下寄存

器：byte2（高温触发值）：报警触发高温值。byte3（低温触发值）：报警触发

低温值。byte4（配置寄存器）：分辨率配置等参数。数据写入按低位到高位顺

序进行，可通过复位随时中断写入操作。

(3)读取高速缓存器 [BEh]

  该命令从高速缓存器读取数据，读取从 byte0（温度低 8位）开始，到 byte8

（CRC 校验）结束。数据从低位开始传送，读取过程可通过复位随时终止。

(4)复制高速缓存器 [48h]

  将高速缓存器中的高温触发值（byte2）、低温触发值（byte3）和配置寄存

器（byte4）的值复制到非易失性存储器（EEPROM）中，若命令后主机发出读请

求，DS18B20 会返回：

    "0"：表示复制操作正在进行。

    "1"：表示复制完成。

  需要注意的是如果使用寄生电源模式,发送该命令后，必须立即强制拉高总

线至少 10ms。

(5)召回 EEPROM [B8h]

  将 EEPROM 中存储的高温触发值（byte2）、低温触发值（byte3）和配置寄

存器（byte4）的数据恢复到高速缓存器中。上电后，召回操作会自动执行一次，

确保缓存器中有有效数据。若执行该命令后主机发出读请求，DS18B20 会返回：



6 / 14

    "0"：表示正在召回数据。

    "1"：表示召回完成。

(6)读取供电模式 [B4h]

  该命令用于判断 DS18B20 的供电方式：返回 "0"：表示使用寄生电源模式。

返回 "1"：表示使用外部电源模式。

21.3. 程序设计

根据以上对DS18B20的介绍, 我们使用逻辑派Z1开发板对DS18B20进行初始化,

并写入将模块测量的环境温度解析出来,使用串口发送到上位机。

  DS18B20 驱动模块端口描述如下表:

驱动部分代码如下，完整源码请查看 demo 源文件

always@(posedge clk_us or negedge rst_n)
if(rst_n == 1'b0)

state <= WAIT_TRI;
else

case(state)
WAIT_TRI : //等待触发采样

if(cap_start)//检测到触发信号,跳转到 INIT



7 / 14

state <= INIT;
else

state <= WAIT_TRI;
INIT ://初始化

if(us_cnt == 20'd959 && flag == 1'b1)//初始化完成，跳转到 WR_CMD
state <= WR_CMD;

else
state <= INIT;

WR_CMD ://写温度转换命令

if(bit_cnt == 4'd15 && us_cnt == 20'd64)//写完 16位数据，跳

转到 WAIT
state <= WAIT;

else
state <= WR_CMD;

WAIT ://等待转换完成

if(us_cnt == WAIT_MAX)//等待完转换时间，跳转到 RD_CMD
state <= INIT_AGAIN;

else
state <= WAIT;

INIT_AGAIN ://初始化

if(us_cnt == 20'd959 && flag == 1'b1)//初始化完成，跳转到 RD_CMD
state <= RD_CMD;

else
state <= INIT_AGAIN;

RD_CMD ://写温度读取命令

if(bit_cnt == 4'd15 && us_cnt == 20'd64)//写完 16位数据，跳

转到 RD_TEMP
state <= RD_TEMP;

else
state <= RD_CMD;

RD_TEMP ://读温度数据

if(bit_cnt == 4'd15 && us_cnt == 20'd64)//接收完 16位数据，

跳转到 WAIT_TRI
state <= WAIT_TRI;

else
state <= RD_TEMP;

default:state <= WAIT_TRI;
endcase

always@(posedge clk_us or negedge rst_n)
if(rst_n == 1'b0)

begin
dq_en <= 1'b0;
dq_out <= 1'b0;
end



8 / 14

else
case(state)

WAIT_TRI :
begin

dq_en <= 1'b1;
dq_out <= 1'b1;

end
INIT :

if(us_cnt < 20'd499)
begin

dq_en <= 1'b1;
dq_out <= 1'b0;

end
else

begin
dq_en <= 1'b0;
dq_out <= 1'b0;

end
WR_CMD :

if(us_cnt > 20'd62)
begin

dq_en <= 1'b0;
dq_out <= 1'b0;

end
else if(us_cnt <= 20'd1)

begin
dq_en <= 1'b1;
dq_out <= 1'b0;

end
else if(WR_CC_44[bit_cnt] == 1'b0)

begin
dq_en <= 1'b1;
dq_out <= 1'b0;

end
else if(WR_CC_44[bit_cnt] == 1'b1)

begin
dq_en <= 1'b0;
dq_out <= 1'b0;

end
WAIT :

begin
dq_en <= 1'b1;
dq_out <= 1'b1;

end



9 / 14

INIT_AGAIN :
if(us_cnt < 20'd499)

begin
dq_en <= 1'b1;
dq_out <= 1'b0;

end
else

begin
dq_en <= 1'b0;
dq_out <= 1'b0;

end
RD_CMD :

if(us_cnt > 20'd62)
begin

dq_en <= 1'b0;
dq_out <= 1'b0;

end
else if(us_cnt <= 20'd1)

begin
dq_en <= 1'b1;
dq_out <= 1'b0;

end
else if(WR_CC_BE[bit_cnt] == 1'b0)

begin
dq_en <= 1'b1;
dq_out <= 1'b0;

end
else if(WR_CC_BE[bit_cnt] == 1'b1)

begin
dq_en <= 1'b0;
dq_out <= 1'b0;

end
RD_TEMP :

if(us_cnt <= 1)
begin

dq_en <= 1'b1;
dq_out <= 1'b0;

end
else

begin
dq_en <= 1'b0;
dq_out <= 1'b0;

end
default:



10 / 14

begin
dq_en <= 1'b0;
dq_out <= 1'b0;

end
endcase

 因为我们使用的是默认配置，所以温度采样分辨率为 12 位，温度转换时间为

750ms。模块核心逻辑是一个三段式状态机, 我们通过设计这个状态机来处理顶

层触发信号与 DS18B20 的交互。状态机总共有七个状态：DS18B20 驱动模块的状

态机共有 7个状态，每个状态的功能如下：

WAIT_TRI: 在此状态下，等待顶层模块的触发信号 cap_flag 启动信号的到来。如

果接收到启动信号，状态将转移到 INIT。

INIT: 初始化状态。在该状态中，按照总线时序发送发送初始化信号。如果初始化

信号发送成功，且接收到 DS18B20 的应答，状态机将转移到 WR_CMD 状态。

WR_CMD: 写命令状态。在此状态中，发送发送跳过 ROM 命令[CCh]和温度转换命令

[44h]。发送完成后，状态机将转移到 WAIT 状态，等待 DS18B20 采集温度数据完成。

WAIT: 等待状态。在此状态下，进行 750ms 的等待。DS18B20 温度转换完成，当等

待完成后状态机将转移到 INIT_AGAIN 状态。

INIT_AGAIN: 重新初始化状态。发送初始化命令，如果初始化信号发送成功，且接

收到 DS18B20 的应答，状态机将转移到 RD_CMD 状态。

RD_CMD: 读命令状态。在此状态下，向 DS18B20 发送跳过 ROM 命令[CCh]和温度读

取命令[BEh]。读取命令发送完成后，状态机将转移到 RD_TEMP 状态。

RD_TEMP: 读取温度状态。在此状态中，处理 DS18B20 返回的温度数据。处理完成

后，状态机将重新回到等待启动状态(WAIT_TRI)。

分析这个模块需要清楚的理解 DS18B20 的操作过程，若读者对 DS18B20 的操作时序

不太清楚，请务必返回理论部分进行学习。

串口发送代码如下：

// 串口发送数据控制

always @(posedge clk or negedge rst_n) begin

if (!rst_n) begin

uart_tx_req <= 1'b0;

uart_tx_data <= 8'b0;

ascii_table[0] = 8'd48; //'0'

ascii_table[1] = 8'd49; //'1'

ascii_table[2] = 8'd50; //'2'

ascii_table[3] = 8'd51; //'3'



11 / 14

ascii_table[4] = 8'd52; //'4'

ascii_table[5] = 8'd53; //'5'

ascii_table[6] = 8'd54; //'6'

ascii_table[7] = 8'd55; //'7'

ascii_table[8] = 8'd56; //'8'

ascii_table[9] = 8'd57; //'9'

ascii_table[10] = 8'd43; //'+'

ascii_table[11] = 8'd45; //'-'

end else if (work_en && !uart_tx_busy) begin

case (tx_byte_cnt) // 根据当前字节计数

器发送数据

7'd1: uart_tx_data <= STR[127:120]; // "当"

7'd2: uart_tx_data <= STR[119:112]; // "当"

7'd3: uart_tx_data <= STR[111:104]; // "前"

7'd4: uart_tx_data <= STR[103:96]; // "前"

7'd5: uart_tx_data <= STR[95:88]; // "环"

7'd6: uart_tx_data <= STR[87:80]; // "环"

7'd7: uart_tx_data <= STR[79:72]; // "境"

7'd8: uart_tx_data <= STR[71:64]; // "境"

7'd9: uart_tx_data <= STR[63:56]; // "温"

7'd10: uart_tx_data <= STR[55:48]; // "温"

7'd11: uart_tx_data <= STR[47:40]; // "度"

7'd12: uart_tx_data <= STR[39:32]; // "度"

7'd13: uart_tx_data <= STR[31:24]; // "为"

7'd14: uart_tx_data <= STR[23:16]; // "为"

7'd15: uart_tx_data <= STR[15:8]; // "："

7'd16: uart_tx_data <= STR[7:0]; // "："

7'd17: uart_tx_data <= ascii_table[data_symbol]; // 温度符号

7'd18: uart_tx_data <= ascii_table[s_sw]; // 温度十位

7'd19: uart_tx_data <= ascii_table[s_gw]; // 温度个位

7'd20: uart_tx_data <= 8'd46; //小数点

7'd21: uart_tx_data <= ascii_table[s_sf]; // 温度十分位

7'd22: uart_tx_data <= ascii_table[s_bf]; // 温度百分位

7'd23: uart_tx_data <= 8'h0A; // 换行符

default: uart_tx_data <= 8'b0;

endcase

uart_tx_req <= 1'b1; // 拉高请求信号

end else begin

uart_tx_req <= 1'b0; // 请求信号拉高仅一

个时钟周期

end

end



12 / 14

模块中初始化了一个 ascii_table 用来储存阿拉伯数字 0~9 和符号“+ -”的 ASCII

值，将 DS18B20 采样得到的温湿度数据在 ascii_table 索引到对应的 ASCII 值进行

发送。

21.4. 代码仿真

由于本实验需要与 DS18B20 通过总线交互信息，在测试文件中编写 DS18B20 的应

答逻辑比较麻烦，我们可以将 DS18B20 驱动模块中的关键信号打上 debug 标记，

分析 DS18B20 驱动模块是否正确工作，同时检查 DS18B20 是否正确应答我们通过

总线发送的信息。

  我们将顶层模块发送拉低采样触发信号 cap_flag、总线信号 dq、温度符号

指示 data_symbol、温度有效标志 data_vld、温度数据 data_out、状态机信号

state、微秒计数器 us_cnt、接收数据比特计数器 bit_cnt 添加上 debug 标记进

行分析。

  首先我们设置触发模式为 cap_flag = 1，按下按键捕获到波形，观察状态

机是否正确响应触发信号。波形如下图所示，状态机正确跳转到初始化状态，对

DS18B20 进行初始化。

  然后设置触发模式为（state = 7’b0000_010&&us_cnt = 959）（状态机处

于 DS18B20 初始化状态，接收响应完成），DS18B20 总线复位时序中我们有说明，

一整个复位操作包括主机发送复位与从机应答总共 960us，我们以此作为条件观

察复位是否成功，按下按键观察捕获到的波形如下：



13 / 14

  由上图可知当 us_cnt = 959 时，状态机跳转到下一状态，同时总线拉低，

符合我们的复位时序。

  接下来将触发模式设置为（state = 7’b0000_100&&bit_cnt = 15&&us_cnt

=64）（状态机发送 16bit 命令状态，并且发送完成），捕获到的波形图如下图：

  由上图可知在发送完成 16bit 命令[CCh][44h]之后状态机跳转到等待状态，

等待 DS18B20 进行温度转换，共等待 750ms，此时总线拉高。由此可见状态跳转

逻辑正确。接下来就是再次进行初始化，发送命令[CCh][BEh]，状态机跳转到接

收温度数据状态，开始读数据。我们将触发模式设置为（state = 7’

b1000_000&&bit_cnt = 15&&us_cnt =64）（状态机接收温度数据，并且接收完

成），捕获到的波形图如下：



14 / 14

  在这张图中，状态机接收数据完成，并计算出当前温度为 17.18 度，同时

data_vld 信号拉高，表示当前温度数据解析完成，数据有效。之后状态机跳转

到等待触发状态，等待顶层触发信号再次到来。由此可见，模块功能正确。

21.5. 实验现象


	21.DS18B20温度传感器使用实验例程
	21.1.实验目的
	21.2.实验简介
	21.2.1.DS18B20模块介绍
	21.2.2.DS18B20通讯时序
	21.2.3.DS18B20通讯过程

	21.3.程序设计
	21.4.代码仿真
	21.5.实验现象


