
1 / 14

22.DHT11 温湿度传感器使用实验例程

22.1. 实验目的

使用盘古 PGX-Nano开发板驱动DHT11模块读取环境温湿度度并通过串口打印输

出

22.2. 实验简介

22.2.1. DHT11 模块介绍

 DHT11 是一种数字温湿度传感器，集成了温度和湿度测量功能。它采用电容式

感湿元件和负温度系数电阻测温元件，并结合高性能 8位单片机进行信号的采集

处理和输出。DHT11 通过单线数字接口与微处理器通信，输出经过校准的数字信

号，温度测量范围为 0至 50 摄氏度，精度为±2℃；湿度测量范围为 20%至 90%RH，

精度为±5%RH。因其良好的稳定性和性价比，被广泛应用于各种环境监测设备、

智能家居系统和自动化控制领域。其模块图如下：

模块引脚定义如下：



2 / 14

22.2.2. DHT11 通讯时序以及数据格式

DHT11是一种数字温湿度传感器，它通过单总线协议与微处理器通信。正常

情况下，DHT11处于低功耗模式。当设备需要读取温湿度数据时，首先发送一次

复位信号。DHT11接收到复位信号后，从低功耗模式转换到高速模式，开始执行

一次温湿度采集过程，完成后通过单总线发送响应信号，并将总线拉高，准备传

输数据。一次完整的数据传输包括 40 位（5字节）的数据，具体格式为：8 位湿

度整数数据 + 8位湿度小数数据 + 8位温度整数数据 + 8位温度小数数据 + 8位
校验和。

由于 DHT11的分辨率限制，湿度和温度的小数部分数据始终为 0。校验和是

前 4个字节数据的累加和，用于验证数据传输的准确性，确保接收端接收到的数

据没有错误。

  DHT11只有在接收到开始信号后才会触发温湿度采集，如果没有接收到复位

信号，它将保持在低功耗模式，不会主动进行数据采集。当数据采集和传输完成

后，DHT11会自动切换回低功耗模式，等待下一次触发信号。

  通讯过程示意图如下：

  总线空闲状态为高电平,主机把总线拉低等待 DHT11 响应,主机把总线拉低必

须大于 18 毫秒，保证 DHT11 能检测到起始信号，然后拉高等待 20-40us, 读取

DHT11的响应信号，此时主机释放总线。DHT11接收到主机的开始信号后，发送

（70~100）us 低电平响应信号。然后然后 DHT11 拉高总线 （70~100）us，开

始传输数据。

  主机发送触发信号与 DHT11响应的过程示意图如下：

由该图可知触发信号由主机发送，主机需要拉低总线至少 18ms，然后再拉

高总线，延时 20~40us。DHT11 检测到触发信号后，开始一次采样，并拉低总

线 80us 表示响应信号，告诉主机数据已经准备好了。然后 DHT11 拉高总线

80us，之后开始传输数据。数字 1与数字 0 的表示方法示意图如下：

 数字 1表示方法示意图



3 / 14

  数字 0表示方法示意图

 由示意图可知“0”的高电平持续 26~28us，“1”的高电平持续 70us，每一位数据

前都有 50us 的起始时隙。到此 DHT11的通讯协议以及数据格式就介绍完了。

22.3. 程序设计

  DHT11驱动模块端口描述如下表：

驱动部分代码如下，完整源码请查看 demo 源文件

//同步时序描述状态转移

always @(posedge clk_1us or negedge rst_n)begin

if(!rst_n)



4 / 14

cur_state <= WAIT_1S;

else

cur_state <= next_state;

end

//组合逻辑判断状态转移条件，描述状态转移规律以及输出

always @(*)begin

next_state = WAIT_1S;

case(cur_state)

WAIT_1S :begin

if(us_cnt == TIME_1S) //满足上电延时的时间

next_state = WAIT_TRI;

else

next_state = WAIT_1S;

end

WAIT_TRI :begin

if(cap_start)

next_state = START;

else

next_state = WAIT_TRI;

end

START :begin

if(us_cnt == TIME_BE) //满足拉低总线的时间

next_state = DELAY_30US;

else

next_state = START;

end

DELAY_30US :begin

if(us_cnt == TIME_GO) //满足主机释放总线时

间

next_state = BUS_REPLY_LOW;

else

next_state = DELAY_30US;

end

BUS_REPLY_LOW :begin

if(us_cnt <= 'd500)begin //不到 500us

if(dht11_rise && us_cnt >= 'd70

&& us_cnt <= 'd100) //上升沿响应，且低电

平时间介于 70~100us

next_state = BUS_REPLY_HIGH; //跳转到 DELAY_75us

else

next_state = BUS_REPLY_LOW; //条件不满足状态不变

end

else



5 / 14

next_state = START; //超过 500us 仍没有上

升沿响应则跳转到 START

end

BUS_REPLY_HIGH :begin

if(dht11_fall && us_cnt >= 'd70) //上升沿响应，且低电

平时间大于 70us

next_state = REV_data; //跳转到 REV_data

else

next_state = BUS_REPLY_HIGH; //条件不满足状态不变

end

REV_data :begin

if(dht11_rise && bit_cnt == 'd40) //接收完了所有 40个

数据后会拉低一段时间作为结束

//捕捉到上升沿且接收数

据个数为 40

next_state = WAIT_TRI; //状态跳转到 START，

重新开始新一轮采集

else

next_state = REV_data; //条件不满足状态不变

end

default:next_state = START; //默认状态为 START

endcase

end

//时序逻辑描述输出

always @(posedge clk_1us or negedge rst_n)begin

if(!rst_n)begin //复位状态下输出如

下

dht11_en <= 1'b0;

dht11_out <= 1'b0;

us_cnt <= 22'd0;

bit_cnt <= 6'd0;

data_temp <= 40'd0;

end

else

case(cur_state)

WAIT_1S :begin

dht11_en <= 1'b0; //释放总线，由外部电

阻拉高

if(us_cnt == TIME_1S)

us_cnt <= 22'd0;

else

us_cnt <= us_cnt + 1'd1;

end



6 / 14

WAIT_TRI :begin

dht11_en <= 1'b0;

end

START :begin

dht11_en <= 1'b1; //占用总线

dht11_out <= 1'b0; //输出低电平

if(us_cnt == TIME_BE)

us_cnt <= 22'd0;

else

us_cnt <= us_cnt + 1'd1;

end

DELAY_30US :begin

dht11_en <= 1'b0; //释放总线，由外部电

阻拉高//这里是否要拉高

if(us_cnt == TIME_GO)

us_cnt <= 22'd0;

else

us_cnt <= us_cnt + 1'd1;

end

BUS_REPLY_LOW :begin

dht11_en <= 1'b0; //释放总线，由外部电

阻拉高

if(us_cnt <= 'd500)begin //计时不到 500us

if(dht11_rise && us_cnt >= 'd70

&& us_cnt <= 'd100) //上升沿响应，且低电

平时间介于 70~100us

us_cnt <= 22'd0; //计时清零

else

us_cnt <= us_cnt + 1'd1;

end

else

us_cnt <= 22'd0; //超过 500us 仍没有上

升沿响应，则计数清零

end

BUS_REPLY_HIGH :begin

dht11_en <= 1'b0; //释放总线，由外部电

阻拉高

if(dht11_fall && us_cnt >= 'd70) //上升沿响应，且低电

平时间大于 70us

us_cnt <= 22'd0; //计时清零

else

us_cnt <= us_cnt + 1'd1;

end

REV_data :begin



7 / 14

dht11_en <= 1'b0; //释放总线，由外部电

阻拉高，进入读取状态

if(dht11_rise && bit_cnt == 'd40)begin //数据接收完毕

bit_cnt <= 6'd0;

us_cnt <= 22'd0;

end

else if(dht11_fall)begin //检测到低电平，则说

明接收到一个数据

bit_cnt <= bit_cnt + 1'd1; //数据接收计数器+1

us_cnt <= 22'd0;

if(us_cnt <= 'd100)

data_temp[39-bit_cnt] <= 1'b0; //总共所有的时间少于

100us,则说明接收到“0”

else

data_temp[39-bit_cnt] <= 1'b1; //总共所有的时间大于

100us,则说明接收到“1”

end

else begin //所有数据没有接收

完，且正处于 1个数据的接收进程中

bit_cnt <= bit_cnt;

data_temp <= data_temp;

us_cnt <= us_cnt + 1'd1;

end

end

default:;

endcase

end

//校验读取的数据是否符合校验规则

always @(posedge clk_1us or negedge rst_n)begin

if(!rst_n)

temperature_data <= 32'd0;

else if((data_temp[7:0] == data_temp[39:32] + data_temp[31:24] +

data_temp[23:16] + data_temp[15:8]))

temperature_data <= data_temp[39:8]; //符合规则，则把有

效数据赋值给输出

else

temperature_data <= temperature_data; //不符合规则，则舍

弃这次读取的数据，输出仍保持上次的状态不变

end

always @(posedge clk_1us or negedge rst_n)begin

if(!rst_n)

data_vld <= 1'b0;

else if(dht11_rise && bit_cnt == 'd40)

data_vld <= 1'b1;



8 / 14

else

data_vld <= 1'b0;

end

 模块使用一个三段式状态机处理板卡与 DHT11 的通讯逻辑。我们可以通过状

态机的跳转过程来理解模块的工作逻辑。这个状态机总共有如下状态：WAIT_1S
（上电延迟状态）、WAIT_TRI（等待触发状态）、START（发送触发信号状态）、

DELAY_30US（主机释放总线 30us）、BUS_REPLY_LOW（接收 DHT11 低电平响应）、

BUS_REPLY_HIGH（接收 DHT11高电平响应）、REV_data（解析 DHT11数据）。

下面我们挨个解释这些状态:

WAIT_1S：上电后等待 1 秒的时间，确保 DHT11传感器稳定工作。

WAIT_TRI：等待外部触发信号 cap_start_flag，用于启动温湿度数据采集。

cap_start_flag在顶层模块由按键产生。

START：发送触发信号，拉低总线 18毫秒，使 DHT11传感器进入响应模式。

DELAY_30US：主机释放总线 30微秒，等待 DHT11传感器的响应信号。

BUS_REPLY_LOW：检测 DHT11 传感器的低电平响应信号，低电平持续时间由

us_cnt计数，需要满足低电平持续时间在 70~100us。

BUS_REPLY_HIGH：检测 DHT11 传感器的高电平响应信号，低电平持续时间由

us_cnt计数，需要满足高电平持续时间大于在 70us。

REV_data：当响应信号接收无误之后开始，接收 DHT11传感器发送的 40 位数据，

并根据接收到的数据位更新内部数据存储，直到接收完所有数据。

这里需要注意一下，代码中：assign dht11 = dht11_en ? dht11_out : 1'bz;
  通过 dht11_en 信号来控制双向端口 dht11。当 dht11_en 为 1 时双向端口

dht11为输出，当 dht11_en为 0 时双向端口 dht11为输入。这是一种常用的控制

双向端口的方式。

串口发送代码如下：

//cnt_20ms:如果时钟的上升沿检测到外部按键输入的值为低电平时，计数器开始计数

always@(posedge clk or negedge rst_n)
if(rst_n == 1'b0)

cnt_20ms <= 20'b0;
else if(key_in == 1'b1)

cnt_20ms <= 20'b0;
else if(cnt_20ms == CNT_MAX && key_in == 1'b0)

cnt_20ms <= cnt_20ms;
else

cnt_20ms <= cnt_20ms + 1'b1;



9 / 14

always@(posedge clk or negedge rst_n)
if(rst_n == 1'b0)

key_flag <= 1'b0;
else if(cnt_20ms == CNT_MAX - 1'b1)

key_flag <= 1'b1;
else

key_flag <= 1'b0;
always@(posedge clk or negedge rst_n)

if(rst_n == 1'b0)
work_en <= 1'b0;

else if(data_vld == 1'b1)
work_en <= 1'b1;

else if(tx_byte_cnt== 7'd23&&uart_tx_done)
work_en <= 1'b0;

else
work_en <= work_en;

//串口发送逻

always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin

tx_byte_cnt <= 7'b0;
end else if (work_en) begin

if (tx_byte_cnt == 7'd23&&uart_tx_done) // 总

共发送 24 字节

tx_byte_cnt <= 7'b0;
else if(uart_tx_done)

tx_byte_cnt <= tx_byte_cnt + 1'b1;
end

end
// 串口发送数据控制

always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin

uart_tx_req <= 1'b0;
uart_tx_data <= 8'b0;
wendu_str <= WENDU_STR;
shidu_str <= SHIDU_STR;
ascii_table[0] = 8'd48; //'0'
ascii_table[1] = 8'd49; //'1'
ascii_table[2] = 8'd50; //'2'
ascii_table[3] = 8'd51; //'3'
ascii_table[4] = 8'd52; //'4'
ascii_table[5] = 8'd53; //'5'
ascii_table[6] = 8'd54; //'6'
ascii_table[7] = 8'd55; //'7'



10 / 14

ascii_table[8] = 8'd56; //'8'
ascii_table[9] = 8'd57; //'9'

end else if (work_en && !uart_tx_busy) begin
case (tx_byte_cnt) // 根据

当前字节计数器发送数据

7'd0: uart_tx_data <= wendu_str[47:40]; // "
温"

7'd1: uart_tx_data <= wendu_str[39:32]; // "
温"

7'd2: uart_tx_data <= wendu_str[31:24]; // "
度"

7'd3: uart_tx_data <= wendu_str[23:16]; // "
度"

7'd4: uart_tx_data <= wendu_str[15:8]; // "：
"

7'd5: uart_tx_data <= wendu_str[7:0]; // "：
"

7'd6: uart_tx_data <=
ascii_table[temperature_data[15:12]]; // 温度高字节的 ASCII

7'd7: uart_tx_data <=
ascii_table[temperature_data[11:8]]; // 温度低字节的 ASCII

7'd8: uart_tx_data <= 8'h2e; // 小数

点

7'd9: uart_tx_data <=
ascii_table[temperature_data[7:4]]; // 温度高字节的 ASCII

7'd10: uart_tx_data <=
ascii_table[temperature_data[3:0]]; // 温度低字节的 ASCII

7'd11: uart_tx_data <= 8'h20; // 空

格

7'd12: uart_tx_data <= shidu_str[47:40]; // "
湿"

7'd13: uart_tx_data <= shidu_str[39:32]; // "
湿"

7'd14: uart_tx_data <= shidu_str[31:24]; // "
度"

7'd15: uart_tx_data <= shidu_str[23:16]; // "
度"

7'd16: uart_tx_data <= shidu_str[15:8]; // "：
"

7'd17: uart_tx_data <= shidu_str[7:0]; // "：
"

7'd18: uart_tx_data <=
ascii_table[temperature_data[31:28]]; // 湿度高字节的 ASCII



11 / 14

7'd19: uart_tx_data <=
ascii_table[temperature_data[27:24]]; // 湿度高字节的 ASCII

7'd20: uart_tx_data <= 8'h2e; // 小数

点

7'd21: uart_tx_data <=
ascii_table[temperature_data[23:20]]; // 湿度低字节的 ASCII

7'd22: uart_tx_data <=
ascii_table[temperature_data[19:16]]; // 湿度低字节的 ASCII

7'd23: uart_tx_data <= 8'h0A; // 换行

符

default: uart_tx_data <= 8'b0;
endcase
uart_tx_req <= 1'b1; // 拉高

请求信号

end else begin
uart_tx_req <= 1'b0; // 请求

信号拉高仅一个时钟周期

end
end

我们在顶层模块接收用户输入的按键信号 key_in使用一个 20ms 计数器对其

进行消抖产生温湿度驱动模块的采样触发信号 cap_start_flag。将 DHT11 得到的

数据通过串口发送到上位机进行查看，汉字使用 GB2312编码，模块中初始化了

一个 ascii_table用来储存阿拉伯数字 0~9的 ASCII 值，将 DHT11 采样得到的温湿

度数据在 ascii_table 索引到对应的 ASCII 值进行发送。其中串口发送部分的知识

在之前的章节已有介绍，读者若对这部分不熟悉，可到串口回环章节进行查看。

22.4. 代码仿真

由于本实验需要与 DHT11 通过总线交互信息，在测试文件中编写 DHT11 的

应答逻辑比较麻烦，我们可以将 DHT11驱动模块中的关键信号打上 debug 标记，

分析 DHT11驱动模块是否正确工作，同时检查 DHT11 是否正确应答我们通过总

线发送的信息。

  DHT11的控制流程大致为主机触发、DHT11应答、DHT11 发送温度数据主机

接收温度数据。我们将 DHT11 驱动代码中的状态机 cur_stste、顶层模块发送的

采样触发信号 cap_start_flag、DHT11总线信号 dht11、微秒计数器 us_cnt、接收

数据比特计数器 bit_cnt添加上 debug标记。

  将触发模式设置为 cap_start_flag 高电平触发，按下板卡按键 k0，捕捉到的

波形如下图所示，总线信号 dht11在空闲状态为高电平，在顶层发送触发信号后

状态机由等待触发状态（WAIT_TIR）跳转至 START状态，此时 FPGA占用总线并

拉低总线 18ms，向 DHT11发送开始信号。



12 / 14

  将触发模式设置为（cur_state = 7’b0010000&&us_cnt = 70）（状态机在

接收来自 DHT11 的低电平响应状态），按下按键，观察捕获到的波形图，如果状

态机正确跳转，那么说明我们向 DHT11 发送的触发信号被回应.

由上图可知我们状态机在状态机在接收来自 DHT11 的低电平响应状态时，

dht11 为低电平，并且 us_cnt成功计数到 70 以上，满足响应时间在（70~100）
us的要求，说明来自 DHT11的低电平响应是正确的。

  同样的我们将触发条件设置为（cur_state = 7’b0100000&&us_cnt = 70）（状

态机在接收来自 DHT11 的高电平响应状态）按下按键，观察捕获到的波形图如

下：



13 / 14

  结合波形图可以发现状态机在接收高电平响应的状态时，us_cnt也成功计数

到 70us 以上，说明来自 DHT11的高电平响应也是正确的。至此 DHT11 应答成功，

开始发送温度数据。

  我们知道，DHT11 发送的温度数据是 40bit 的 8 位湿度整数数据 + 8位湿度

小数数据 + 8 位温度整数数据 + 8 位温度小数数据 + 8 位校验和。我们将触发状

态设置为（cur_state = 7’b1000000&&bit_cnt = 40）（状态机在接收来自 DHT11
的数据并且接收完成），再次按下按键，观察捕获到的波形图如下

 由捕获到的波形可知，状态机在接收数据状态时，成功接收数据，并且接收

bit计数器成功计数到 40，说明接收到了来自 DHT11的完整 40bit 数据，至此，

模块功能验证成功。

22.5. 实验现象

  将程序下载进入板卡后，将 DHT11 按照约束文件正确连接，打开上位机串

口助手，按下板卡按键 S0，可得到如下结果。



14 / 14


	22.DHT11温湿度传感器使用实验例程
	22.1.实验目的
	22.2.实验简介
	22.2.1.DHT11模块介绍
	22.2.2.DHT11通讯时序以及数据格式

	22.3.程序设计
	22.4.代码仿真
	22.5.实验现象


