26. NG A%TR] 5 M T SL I Ui B

26.1. LI FEif

S i /NI R FPGA FFAHR . PMOD RN BEHEH 5% PR 1 51 b T35
it

26.2. SEIHER

¥ Sws SRS SR B (B RRE SW1. sw2. sw3 LI ik FIRE) .

S1FEH T A Do . S2 #ZEEHE T A Re &\ S3 HZHEHR N A Mi .
SA4 ZBEHE T K Fa By SWO FRILTF ISR A So &\ SW1 IRIGTFR4R T A
La %\ SW2 RGBT R T A Si e

26.3. SERAE B A

SCIRAE A “/INIREERHL” AR5 PMOD NS S, I Hhigng 85 04 Jo s i g
o

JEE IR R RIS = AE BOR S 4 g 8%, IS SRR
e RE, R

o

>

jjzﬁ HNBO9AO3- 3kilz
' ki

K | 0, llll‘i L]
7
R oD I

L)
o
E-:-,
g

BEEP > RS panl

v |

€1 . 1uF
|

1Ll

26.4. LR

WG 52 — PP AR S M T IR 8, 0 D9 NG 2% 5 To Ui 25 P A
FL DX A YR 2% PN P Xl Rt B P9 R S Y B LRI, TG iR Y A5 P A
FROR B RIS & i 7 Y, 38 L 75 B4 TR IR A R A RS, I R A X L
VAR R IR -

PMOD #én g L HY (1 2 oIy 4%, #5248 TRz IR 4 REA M7, 5K
56 r YRR T R

e SR /.
LT LT > g gt 7 2 1y

|<—>| HAF=1/T e
FE #AT \

TCVIE B s T B4y TR GIRA BER M E W, %5 T AR S R, K
H S BB 2 AR, IR G IRINAE N 440Hz B, BENG IR H la IR A
17 FR) 5 T X L PR 52 3 PR AR G R R s -

B A% (Hz) JARA(ns)
% 1Do 262 3816
& 2Re 294 3401
% 3Mi 330 3030
i 4Fa 349 2865
& 5So 392 2551
& 6La 440 2272
& 7Si 494 2024
+ 1Do 523 1912
H1 2Re 587 1703
Hh3Mi 659 1517
H 4Fa 698 1732
F 5S0 784 1275
H 6La 880 1136
o 7Si 988 1012
= 1Do 1047 955
= 2Re 1175 851
= 3Mi 1319 758
= 4Fa 1397 751
& 5So0 1568 637
=i 6La 1760 568
= O7Si 1967 508

26.5. SLRIRME BT

A T R et I gt AT 20 30, A5 B IR A7, 8 I P Bk i T 5% 4%
AN RISR T BRI A e 2, (NS 85 8 AN RV IR 5 1

“timescale 1ns / 1ps

“define UD #1

module top beep(
input wire clk ,
input wire rst n ,
input [6:0]key ,
input [2:0]sw ,
output wire beep

bE

L1117 7777777777 77777777777/ 77/77//7/77//7/77/7/////// /7 7/
// &1 i€ 1Do It 2Re fit 3Mi fit 4Fa It 550 i 6La fif 75i
// Y% (Hz) 262 294 330 349 392 440 494
//

L1177 7777777777 77777777777/ 77/77//7/7/ /77777777 7/ /)

parameter clk freq = 26'd50_000 000 ;

wire [10:0]voice 1[0:6] ;
wire [10:0]voice m[0:6] ;
wire [10:0]voice h[0:6] ;

reg [25:0]para_voice 1[0:6] ;
reg [25:0]para_voice m[0:6] ;
reg [25:0]para_voice h[0:6] ;

reg [25:0]cnt_voice 1[0:6] ;
reg [25:0]cnt_voice m[0:6] ;
reg [25:0]cnt_voice h[0:6] ;

reg freq_voice 1[0:6] ;
reg freq_voice m[0:6] ;
reg freq_voice h[0:6] ;

reg freq_voice[0:6] ;

assign voice 1[0@] = 11'd262 ;
assign voice_1[1] = 11'd294 ;
assign voice 1[2] = 11'd330 ;
assign voice 1[3] = 11'd349 ;
assign voice 1[4] = 11'd392 ;
assign voice_1[5] = 11'd440 ;
assign voice_1[6] = 11'd494 ;
/*

assign voice m[@] = 11'd523 ;
assign voice m[1] = 11'd587 ;
assign voice _m[2] = 11'd659 ;
assign voice m[3] = 11'd698 ;
assign voice m[4] = 11'd784 ;
assign voice m[5] = 11'd880 ;
assign voice m[6] = 11'd988 ;

assign voice_h[0] = 11'd1e47 ;
assign voice _h[1] = 11'd1175 ;

assign voice_h[2] = 11'd1319 ;
assign voice_h[3] = 11'd1397 ;
assign voice_h[4] = 11'd1568 ;
assign voice_h[5] = 11'd1760 ;
assign voice _h[6] = 11'd1967 ;

*/

reg [2:0]cnt_scan ;
reg beep_flag ;
wire key_and ;
reg lock_flag ;

wire [6:0]key stable ;
wire [2:0]sw_stable ;

btn_deb#(
.BTN_WIDTH (4'd7),
.BTN_DELAY (20'hF423F)

)btn_debl

(
.clk (clk) 5
.btn_in (key)]
.btn_deb (key stable)

)

btn_deb#(

.BTN_WIDTH (4'd3),
.BTN_DELAY (20'hF423F)

)btn_deb2

(
.clk (clk) 5
.btn_in (sw) 5
.btn_deb (sw_stable)

)

generate

genvar i ;
for (i=0@ ; i<=6 ; i=i+l1) begin: voice_gen

always @(posedge clk) begin
para_voice_1[i] <= (clk_freq / voice_1l[i])>>1 ;
// para_voice_m[i] <= (clk_freq / voice _m[i])>>1 ;

//
end

para_voice_h[i] <= (clk_freq / voice_h[i])>>1 ;

always @(posedge clk) begin

end
/*

if (~rst_n) begin
cnt_voice_1[i] <= 26'de
freq_voice 1[i] <= 1'be

end

else if (cnt_voice_ 1[i] »>=

cnt_voice 1[i] <= 26'do ;

para_voice 1[i] - 1'bl) begin

I

freq_voice_1[i] <= ~freq_voice_1[i] ;

end
else begin

cnt_voice 1[i] <= cnt_voice 1[i] + 1'b1 ;

freq_voice_ 1[i] <= freq_

end

always @(posedge clk) begin

if (~rst_n) begin
cnt_voice m[i] <= 26'do
freq_voice m[i] <= 1'bo

end

else if (cnt_voice m[i] >=

cnt _voice m[i] <= 26'd0 ;

voice 1[i] ;

para_voice m[i] - 1'bl) begin

2

freq_voice _m[i] <= ~freq_voice m[1] ;

end
else begin

cnt_voice m[i] <= cnt _voice m[i] + 1'b1 ;

freq voice m[i] <= freq_

end

end

always @(posedge clk) begin

if (~rst_n) begin
cnt_voice h[i] <= 26'do
freq voice h[i] <= 1'bo

end

else if (cnt_voice h[i] >=
cnt_voice h[i] <= 26'do

voice m[i] ;

para_voice h[i] - 1'bl) begin

2

freq_voice_h[1] <= ~freq_voice_h[1] ;

end
else begin

cnt_voice h[i] <= cnt _voice h[i] + 1'b1 ;

freq_voice_h[1] <= ~freq_voice_h[1] ;

end
end
*/
always @(posedge clk) begin
if (~rst_n)
freq_voice[i] <= 1'bO ;
else if (sw_stable[Q])
freq_voice[i] <= freq_voice 1[i] ;
// else if (sw_stable[1])
// freq voice[i] <= freq voice m[i] ;
// else if (sw_stable[2])
// freq voice[i] <= freq voice h[1i] ;
else
freq_voice[i] <= 1'bO ;
end
end
endgenerate

always @(posedge clk) begin
if (~rst_n)
cnt_scan <= 3'do ;
else if (cnt_scan >= 3'd6)
cnt_scan <= 3'do ;
else
cnt_scan <= cnt_scan + 1'bl ;
end

assign key and = &key stable ;

always @(posedge clk) begin
if (~rst_n) begin
beep_flag <= 1'bo ;
// lock _flag <= 1'bo ;
end
else if (key and) begin
beep_flag <= 1'bo ;
// Llock_flag <= 1'bo ;&&(lock _flag == 1'bO)
end
else if ((key_stable[cnt_scan] == 1'b@)) begin
beep flag <= freq_voice[cnt_scan] ;
// lock_flag <= 1'b1 ;
end

else begin
beep flag <= beep flag ;

end
end

assign beep = beep flag ;

endmodule

26.6. LB K

¥ Sws RIS FF R B, (BERSERFF SW1. SW2. SW3 R FF Ak IR,

S1 FEH T A Do . S2 R T A Re &\ S3 HZHEHR N A Mi .
S4 F R TR Fa B SWO SRELTF IR TR H So & SW1 RIS HR T A
La %\ SW2 $RIGIT R T A Si e

	26.蜂鸣器简易电子琴实验说明
	26.1.实验简介
	26.2.实验要求
	26.3.实验使用模块介绍
	26.4.实验原理
	26.5.实验源码设计
	26.6.实验现象

