
26. 蜂鸣器简易电子琴实验说明

26.1. 实验简介

实验使用“小眼睛科技”FPGA 开发板、PMOD 蜂鸣器模块完成简易电子琴设

计。

26.2. 实验要求

将 SW5拨码开关拨上（此时保持 SW1、SW2、SW3拨码开关为拨上状态）。

S1 按键按下发出 Do 音、S2 按键按下发出 Re 音、S3 按键按下发出 Mi 音、

S4 按键按下发出 Fa音、SW0 拨码开关拨下发出 So 音、SW1 拨码开关拨下发出

La 音、SW2 拨码开关拨下发出 Si 音。

26.3. 实验使用模块介绍

实验使用“小眼睛科技”公司的 PMOD蜂鸣器模块，其中蜂鸣器为无源蜂鸣

器。

原理图如下图所示：震荡源通过三极管放大后输出给蜂鸣器，蜂鸣器接收到

震荡源后，发出声响。

26.4. 实验原理

蜂鸣器是一种一体化结构的电子讯响器，分为有源蜂鸣器与无源蜂鸣器两种，

其区别是有源蜂鸣器内置驱动电路即内置震荡源，通电即响，无源蜂鸣器使用外

部驱动即外部震荡源，通电后需要给予震荡源才能发出响声，应注意的是这里的

源指震荡源。

PMOD蜂鸣器模块使用的是无源蜂鸣器，需要给予震荡源才能发出响声，实

验中的震荡源即方波。

无源滤波器需要给予震荡源才能发出音响，当给予不同频率的音频源时，发

出的音调也随之变化，如震荡源频率为 440Hz 时，蜂鸣器会发出 la 的音调；不

同的音调对应的震荡源频率如下表所示：

26.5. 实验源码设计

使用计数器对时钟进行分频，得到不同频率的方波，通过按键或拨码开关控

制不同频率方波发送给蜂鸣器，使蜂鸣器发出不同的音调。

`timescale 1ns / 1ps
`define UD #1
module top_beep(

input wire clk ,
input wire rst_n ,
input [6:0]key ,
input [2:0]sw ,
output wire beep
);

//
//音符 低 1Do 低 2Re 低 3Mi 低 4Fa 低 5So 低 6La 低 7Si
//频率(Hz)262 294 330 349 392 440 494
//
///

parameter clk_freq = 26'd50_000_000 ;

wire [10:0]voice_l[0:6] ;
wire [10:0]voice_m[0:6] ;
wire [10:0]voice_h[0:6] ;

reg [25:0]para_voice_l[0:6] ;
reg [25:0]para_voice_m[0:6] ;
reg [25:0]para_voice_h[0:6] ;

reg [25:0]cnt_voice_l[0:6] ;
reg [25:0]cnt_voice_m[0:6] ;
reg [25:0]cnt_voice_h[0:6] ;

reg freq_voice_l[0:6] ;
reg freq_voice_m[0:6] ;
reg freq_voice_h[0:6] ;

reg freq_voice[0:6] ;

assign voice_l[0] = 11'd262 ;
assign voice_l[1] = 11'd294 ;
assign voice_l[2] = 11'd330 ;
assign voice_l[3] = 11'd349 ;
assign voice_l[4] = 11'd392 ;
assign voice_l[5] = 11'd440 ;
assign voice_l[6] = 11'd494 ;
/*
assign voice_m[0] = 11'd523 ;
assign voice_m[1] = 11'd587 ;
assign voice_m[2] = 11'd659 ;
assign voice_m[3] = 11'd698 ;
assign voice_m[4] = 11'd784 ;
assign voice_m[5] = 11'd880 ;
assign voice_m[6] = 11'd988 ;

assign voice_h[0] = 11'd1047 ;
assign voice_h[1] = 11'd1175 ;

assign voice_h[2] = 11'd1319 ;
assign voice_h[3] = 11'd1397 ;
assign voice_h[4] = 11'd1568 ;
assign voice_h[5] = 11'd1760 ;
assign voice_h[6] = 11'd1967 ;
*/

reg [2:0]cnt_scan ;
reg beep_flag ;
wire key_and ;
reg lock_flag ;

wire [6:0]key_stable ;
wire [2:0]sw_stable ;

btn_deb#(
.BTN_WIDTH (4'd7),
.BTN_DELAY (20'hF423F)

)btn_deb1
(

.clk (clk) ,

.btn_in (key) ,

.btn_deb (key_stable)
);

btn_deb#(
.BTN_WIDTH (4'd3),
.BTN_DELAY (20'hF423F)

)btn_deb2
(

.clk (clk) ,

.btn_in (sw) ,

.btn_deb (sw_stable)
);

generate
genvar i ;

for (i=0 ; i<=6 ; i=i+1) begin: voice_gen

always @(posedge clk) begin
para_voice_l[i] <= (clk_freq / voice_l[i])>>1 ;

// para_voice_m[i] <= (clk_freq / voice_m[i])>>1 ;

// para_voice_h[i] <= (clk_freq / voice_h[i])>>1 ;
end

always @(posedge clk) begin
if (~rst_n) begin

cnt_voice_l[i] <= 26'd0 ;
freq_voice_l[i] <= 1'b0 ;

end
else if (cnt_voice_l[i] >= para_voice_l[i] - 1'b1) begin

cnt_voice_l[i] <= 26'd0 ;
freq_voice_l[i] <= ~freq_voice_l[i] ;

end
else begin

cnt_voice_l[i] <= cnt_voice_l[i] + 1'b1 ;
freq_voice_l[i] <= freq_voice_l[i] ;

end
end

/*
always @(posedge clk) begin

if (~rst_n) begin
cnt_voice_m[i] <= 26'd0 ;
freq_voice_m[i] <= 1'b0 ;

end
else if (cnt_voice_m[i] >= para_voice_m[i] - 1'b1) begin

cnt_voice_m[i] <= 26'd0 ;
freq_voice_m[i] <= ~freq_voice_m[i] ;

end
else begin

cnt_voice_m[i] <= cnt_voice_m[i] + 1'b1 ;
freq_voice_m[i] <= freq_voice_m[i] ;

end
end

always @(posedge clk) begin
if (~rst_n) begin

cnt_voice_h[i] <= 26'd0 ;
freq_voice_h[i] <= 1'b0 ;

end
else if (cnt_voice_h[i] >= para_voice_h[i] - 1'b1) begin

cnt_voice_h[i] <= 26'd0 ;
freq_voice_h[i] <= ~freq_voice_h[i] ;

end
else begin

cnt_voice_h[i] <= cnt_voice_h[i] + 1'b1 ;

freq_voice_h[i] <= ~freq_voice_h[i] ;
end

end
*/

always @(posedge clk) begin
if (~rst_n)

freq_voice[i] <= 1'b0 ;
else if (sw_stable[0])
freq_voice[i] <= freq_voice_l[i] ;

// else if (sw_stable[1])
// freq_voice[i] <= freq_voice_m[i] ;
// else if (sw_stable[2])
// freq_voice[i] <= freq_voice_h[i] ;

else
freq_voice[i] <= 1'b0 ;

end

end
endgenerate

always @(posedge clk) begin
if (~rst_n)

cnt_scan <= 3'd0 ;
else if (cnt_scan >= 3'd6)

cnt_scan <= 3'd0 ;
else

cnt_scan <= cnt_scan + 1'b1 ;
end

assign key_and = &key_stable ;

always @(posedge clk) begin
if (~rst_n) begin

beep_flag <= 1'b0 ;
// lock_flag <= 1'b0 ;

end
else if (key_and) begin

beep_flag <= 1'b0 ;
// lock_flag <= 1'b0 ;&&(lock_flag == 1'b0)

end
else if ((key_stable[cnt_scan] == 1'b0)) begin

beep_flag <= freq_voice[cnt_scan] ;
// lock_flag <= 1'b1 ;

end

else begin
beep_flag <= beep_flag ;

// lock_flag <= lock_flag ;
end

end

assign beep = beep_flag ;

endmodule

26.6. 实验现象

将 SW5拨码开关拨上，（此时保持 SW1、SW2、SW3拨码开关为拨上状态）。

S1 按键按下发出 Do 音、S2 按键按下发出 Re 音、S3 按键按下发出 Mi 音、

S4 按键按下发出 Fa音、SW0 拨码开关拨下发出 So 音、SW1 拨码开关拨下发出

La 音、SW2 拨码开关拨下发出 Si 音。

	26.蜂鸣器简易电子琴实验说明
	26.1.实验简介
	26.2.实验要求
	26.3.实验使用模块介绍
	26.4.实验原理
	26.5.实验源码设计
	26.6.实验现象

