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% 1Do 262 3816
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“timescale 1ns / 1ps

“define UD #1

module top beep(
input wire clk ,
input wire rst n ,
input [6:0]key ,
input [2:0]sw ,
output wire beep

bE
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//
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parameter clk freq = 26'd50_000 000 ;

wire [10:0]voice 1[0:6] ;
wire [10:0]voice m[0:6] ;
wire [10:0]voice h[0:6] ;

reg [25:0]para_voice 1[0:6] ;
reg [25:0]para_voice m[0:6] ;
reg [25:0]para_voice h[0:6] ;

reg [25:0]cnt_voice 1[0:6] ;
reg [25:0]cnt_voice m[0:6] ;
reg [25:0]cnt_voice h[0:6] ;

reg freq_voice 1[0:6] ;
reg freq_voice m[0:6] ;
reg freq_voice h[0:6] ;

reg freq_voice[0:6] ;

assign voice 1[0@] = 11'd262 ;
assign voice_1[1] = 11'd294 ;
assign voice 1[2] = 11'd330 ;
assign voice 1[3] = 11'd349 ;
assign voice 1[4] = 11'd392 ;
assign voice_1[5] = 11'd440 ;
assign voice_1[6] = 11'd494 ;
/*

assign voice m[@] = 11'd523 ;
assign voice m[1] = 11'd587 ;
assign voice _m[2] = 11'd659 ;
assign voice m[3] = 11'd698 ;
assign voice m[4] = 11'd784 ;
assign voice m[5] = 11'd880 ;
assign voice m[6] = 11'd988 ;

assign voice_h[0] = 11'd1e47 ;
assign voice _h[1] = 11'd1175 ;



assign voice_h[2] = 11'd1319 ;
assign voice_h[3] = 11'd1397 ;
assign voice_h[4] = 11'd1568 ;
assign voice_h[5] = 11'd1760 ;
assign voice _h[6] = 11'd1967 ;

*/

reg [2:0]cnt_scan ;
reg beep_flag ;
wire key_and ;
reg lock_flag ;

wire [6:0]key stable ;
wire [2:0]sw_stable ;

btn_deb#(
.BTN_WIDTH (4'd7),
.BTN_DELAY (20'hF423F)

)btn_debl

(
.clk (clk) 5
.btn_in (key) ]
.btn_deb (key stable)

)

btn_deb#(

.BTN_WIDTH (4'd3),
.BTN_DELAY (20'hF423F)

)btn_deb2

(
.clk (clk) 5
.btn_in (sw) 5
.btn_deb (sw_stable)

)

generate

genvar i ;
for ( i=0@ ; i<=6 ; i=i+l1 ) begin: voice_gen

always @(posedge clk ) begin
para_voice_1[i] <= (clk_freq / voice_1l[i])>>1 ;
// para_voice_m[i] <= (clk_freq / voice _m[i])>>1 ;



//
end

para_voice_h[i] <= (clk_freq / voice_h[i])>>1 ;

always @(posedge clk ) begin

end
/*

if (~rst_n) begin
cnt_voice_1[i] <= 26'de
freq_voice 1[i] <= 1'be

end

else if (cnt_voice_ 1[i] »>=

cnt_voice 1[i] <= 26'do ;

para_voice 1[i] - 1'bl) begin

I

freq_voice_1[i] <= ~freq_voice_1[i] ;

end
else begin

cnt_voice 1[i] <= cnt_voice 1[i] + 1'b1 ;

freq_voice_ 1[i] <= freq_

end

always @(posedge clk ) begin

if (~rst_n) begin
cnt_voice m[i] <= 26'do
freq_voice m[i] <= 1'bo

end

else if (cnt_voice m[i] >=

cnt _voice m[i] <= 26'd0 ;

voice 1[i] ;

para_voice m[i] - 1'bl) begin

2

freq_voice _m[i] <= ~freq_voice m[1] ;

end
else begin

cnt_voice m[i] <= cnt _voice m[i] + 1'b1 ;

freq voice m[i] <= freq_

end

end

always @(posedge clk ) begin

if (~rst_n) begin
cnt_voice h[i] <= 26'do
freq voice h[i] <= 1'bo

end

else if (cnt_voice h[i] >=
cnt_voice h[i] <= 26'do

voice m[i] ;

para_voice h[i] - 1'bl) begin

2

freq_voice_h[1] <= ~freq_voice_h[1] ;

end
else begin

cnt_voice h[i] <= cnt _voice h[i] + 1'b1 ;



freq_voice_h[1] <= ~freq_voice_h[1] ;

end
end
*/
always @(posedge clk ) begin
if (~rst_n)
freq_voice[i] <= 1'bO ;
else if (sw_stable[Q])
freq_voice[i] <= freq_voice 1[i] ;
// else if (sw_stable[1])
// freq voice[i] <= freq voice m[i] ;
// else if (sw_stable[2])
// freq voice[i] <= freq voice h[1i] ;
else
freq_voice[i] <= 1'bO ;
end
end
endgenerate

always @(posedge clk ) begin
if (~rst_n)
cnt_scan <= 3'do ;
else if (cnt_scan >= 3'd6)
cnt_scan <= 3'do ;
else
cnt_scan <= cnt_scan + 1'bl ;
end

assign key and = &key stable ;

always @(posedge clk ) begin
if (~rst_n) begin
beep_flag <= 1'bo ;
// lock _flag <= 1'bo ;
end
else if (key and) begin
beep_flag <= 1'bo ;
// Llock_flag <= 1'bo ;&&(lock _flag == 1'bO )
end
else if ((key_stable[cnt_scan] == 1'b@)) begin
beep flag <= freq_voice[cnt_scan] ;
// lock_flag <= 1'b1 ;
end



else begin
beep flag <= beep flag ;

end
end

assign beep = beep flag ;

endmodule
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