27. oA SEIG B RE Ui R

27.1. SEIGTE A

SKERAE “/NIREERHE " FPGA JHARMRS 73 Bas i, I Blosi=R f) — 7 B
(=

LEEEEE LEAgLd

27.2. SEIGHE
1 FE 438 5 i A AR 1
27.3. SEIOAE B A

SEIGAEH “ONREE BRI 7 1 Ags b, BB ES A5 N 8P79818,
AR SPI 8% 12C X 43 A O i BEAT 2 A7 A B B, ARz 13 20 IR BRI an F B Bl

7N

PMOD

A3V3
< o=
1 2
| | 3 4 |
S 5 6 SPI
SDO 7 8 CLK_SEL
CLK_N 9 10 CLK_P
SCLK 11 12 SDI
2.54 2X6

RREHURS I B S5 BRI G R BT R, Ry e R B 43 At CLKO,
NCLKO #21, B M B 20 1S 5 QA0. NQAO. QBO. NQBO,
O BB IEH A bank, 4374 bankA . bankB, Hi[F] bank 4345 H [B4 2 2
—H), R B T bankA B X4 H QAO. NQAO, bankB f)— X%

H QBO. NQBO, 1EMEH & .

A
_ Ep [—4d lll' G w A
500 R, RE ﬁ S0 CLKO L: 8 CLE_P z
£40.1 2— QA0 NCLKO [—at GEN o
o ez M0 s [l RE_, \aOR = Sol
§ ol SDATA/SDI —22 e 8 e
— Nea1 SCLK [—2 s
A3v3 ———— vocoa yoe = e,
e i o [ek e
A §] Neaz | CLkL — 28 ar
o St 10] a3 CLK_SEL [—53 e
1 R BT hi [480 o0 fJ|‘"'1_'
= el = lec/m NEEU = -
" v 1 _|
s > Ol 85 13 SA0/xCS NQBL [— 20 e
11 o VOCOB [—a————» 433
A | i 2 [~ 17
M P — aB3 NeB2 [— 17

BPT98 18NLGI

4. TH
K

1
LR

N

B G B A O AR, TR AR . R EL WA E S
KBTS BB 7 A7 AT {8 /] SPI 27 12C 3@ {5 PhL

R 19 23 JR R I o 1 SPLAE 5 0y BT, 2y SPI Bt e B 2 A7 A2
DNARHSERT, S 12C Prisic B 25 A7 2B

i H] SPI WAL & 27 A7 4, CS 9 ik (& =, SDI 7 Hiits J SPLAI NS
SDO A7 Bt J SPT 55, SCLK NI S .

i 12C Wil Be B A 2e i, 284hHhbky 110110x, H x NH CSE Sk

5E, CS N PR, 3L 1101101, CS AR AL PR, #:4F Mkl 1101100;
UL SDO fE 5 AME R, SDI {55 A 12C #di2k, SCLK {554 12C I #hk.
CLK_N 5 CLK_P {5 5 9B A AR 215 5, 703 as B A LI b B Al
AT SRR, A INE R 2~511.
T4, TEAFAFIRECER, GBS R e Eh A, HNE I E A AR

¥ bankA 5 bankB)&% B4 CLKO. NCLKO it 2 CLK1. NCLK1, ibs&i@it

7/

i N\ 5] B CLK_SEL %1% £ bankA 5 bankB [%} 4 CLKO. NCLKO if &
CLK1. NCLK1. TSR R b, RS A i B 4 P ds i
Jr CLKO. NCLKO 4% 1 _E, B 2 A7 e A E 8 25 ik phasi r 2, AN A
CLK SEL.

FELHL A 2205 B 8P79818, it FrHEZR 4N R B s :

Bank A
I, QA0
| pbiva 42 > nOAD
“1(2 to 511)
» 0AL
42 nOAl
PU
CLK_SEL ——l » QA2
3 Div-by-1 4,2 + nOA2
ciko PO
nCLKO ,> s
PU/PD | » nOA3
Bank B
» QB0
clk1l nPD
nCLK1 o). AONGH 42 i
:j o ™ (2to 511) s
0P 42 nB1
N o
| » nQB2
i Ii # Div-by-1 %2 o
SCLK — =)
L1 |1, > QB3
E.DATA;SDIPU G er — nQB3
sap/ncs 7Y
niac/spl 22

OIFRERE A A bank, FEAN bank XN — N4, & bank A 4 X B
By, HAmomE AR PR R 7 Mias 8 bankA bankB 7% — X4
t

OE 155 M Hi-F i, i A4 &, OE NIRH-FI, i s TR

&, DY OF 5 5 AT EREAT B4

274. MRFHFREELRER N

FELHFE AR 1 20 S 2% 85 % N R B AR S M kTG L R O~F, AN 2717 28 bk o B
8bit AT s B s . AT ASACEVEE TGS 8P79818 £1#FHf-

27.4.1. ¥ SPI AL B 7258

il SPI BCE A A7 5, 5 E Jof it SPLE 5 & 1, RIEHIER, KRIEMH
5 1bit FEE AR EEAL, B 1R, SR PUTEERE, B o MIS R PUT BIRAE,
FERE BRI SN — Al BRSO 5, B SN ST 5 A7 4%
il 3¢ AN 5 725 R i

BRI 4~ B s, TSR ALAE AT -

Read (LSB first)

o u ij LL__L_;UA_LU__L__
TR R

- wﬂllllllllllﬁdﬂﬂﬂé

BERAFIE U0 N E R, ARSI RT

During SPI Write operations, the user may continue to hold nCS low and provide further bytes of data for up to a total of 16 bytes in a single
block write. Data is written directly into the appropriate register as it is received.

Write (LSB first)

o ml 1 * f =1 oy r
oz 0 {_‘1 3 5 HE 17 ‘ it 19 2 @ | 2 27 ta | 29 0

(. Ly L LY Ll Ll L] L] L L =t) d i L]
sdi yw | a [A1 l A2 ‘ e M | as I a6 | oo | b2 |2 |03 | D4 | DS l o7 I [\ 1 | o2 ‘ b3 | D4 D6
sdo Hi-Z

B BRI R T

nCS 5

SCLK

o

SDI

I

a0
SDO. Wz af (= Hiz
‘ X X
Symbol Parameter Min Typ Max Unit
tow SCLK Period 20 ns
towt SCLK Pulse Width Low 8 ns
tow2 SCLK Pulse Width High 8 ns
tout Valid nCS to SCLK Rising Setup Time 10 ns
thi Valid nCS After Valid SCLK Hold Time (CLKE = 0/1) 10 ns
tsuo Valid SDI to SCLK Rising Setup Time 5 ns
tho Valid SDI after valid SCLK Hold Time 5 ns
tq SCLK falling (rising in CLKE = 1 case) to Valid Data Delay Time 5 ns
to nCS rising edge to SDO High Impedance Delay Time 10 ns
Time between Consecutive Read-Read or Read-Write Accesses
fosh (nCS rising edge to nCS falling edge) @ e

fdFH SPTBCE MRS I, SCHRF IR BRI B4R Dy 50MHz.

27.4.2. ¥ F 12C BL B &8

/] 12C Fo B AT 74, /5 B SR SPLE 5 & 0, & A 1FN 12C MWL,

H A 110110, HA x I CSESHRE, CSES NGB TR, 284tk

91101101, CS 155 ALHFR, #8fhHihl Y 11011005 {8 #) 12C WHeh iy

100KHz 5% 400KHz.

ey o By, WA Ao 5 N BB 5 — A A s ik, 55—

TN R NN B B A A AR AR LI, B T AR BN B
F— ARG LR N — AN A AR UL, BB = T R N BN B A
AAFAIIEIN R R A AR SRIE, RS, BIUS A, R 2 it
HohE 7 5, SISO 5 T (1) 7 A7 A ik oA A7 85 B K

FANL B S I P n R B TR -

5 ' Dev Addr + R J A ‘ Data 0 A Data 1 A oooQ A Datan | A | P ‘

Sequential Read

5 I Dev Addr + W ‘ A \OffselAddrMS‘ A | Sr ‘ Dev Addr+ R ‘ A | Data O ‘ A | Datal ‘ A ‘OOO‘ A ‘ Datan ‘ A ‘ P ‘
|

Sequential Write

5 I Dev Addr + W ‘ A ‘OffsethrMSBl A I Data 0 A l Datal \ A ‘DOD‘ A l Datan ‘ A | P l

= start

epeated start

= acknowledge

ne acknowledge
= stop

12C S P PELRAE B R fros CRER AR 8bit £t e 8bit sRRifis k) -

[] from master to slave
[] from slave to master

o BIm Y n
i I

BHFME T ‘ ‘ iy ‘ ‘ fti

27.4.3. IR RS R

RETAE A 73 I 05y R N () 25 47w U HESE L O~F, N2 A7 4% b B

8bit A AF AR EE . TAFAIC B IS 1E 5% 8P79818 H#7 F A
it 0-1:

WA FA74%, BCE N 0: 8h10, 1: 8°h00 BT,
AR 2-5:

bankA #5Hill, %] bankA {5 54 B EE R .

Address (Hex) D7 D6 D5 D4 D3 D2 D1 DO
2 Rsud TERM_A | QA_POL3 | QA_POL2 | QA_POL1 | qA_PoLo
3 Rswd MODE_QA3[2:0] MODE_QA2[2:0]
4 Rswd MODE_QA1[2:0] MODE_QAO[2:0]
5 DIS.OA3 | DIS_QA? | DIS_QA1 \ DIS_QAD Rsvd

AR RS H L 2~5
R bankA %y H AR B 1032 1109 QA0 NQAO, [R5 27 77 s ik 4 (1 %dE 56
2~0 fi7, W bankA #1155 QAO0. NQAO Mk =, 52 fFaetbl 5 %

a5 4 A8 0 fHfE QA0. NQAO ¥ Bi Ay, EARR a0 R s

Output driver mode of operation for output pair QAm, nQAm:
000 = high-impedance

001=LVPECL

010 = LVDS (default)

011 = LVCMOS

100 = HCSL

101 = CML 400mV swing

110 = CML 800mV swing

111 = Reserved

Fott 2 A7 245 BdE R FFBOARD AT

Bit Field Name Field Type Default Value Description

Indicates termination used on Bank A outputs when HCSL mode is selected:

TERM_A RW Ob 0= 33cy 5002

1=500

Output polarity selection for cutput pair nQAm, QAm in LVCMOS mode:
QA_POLm RW Oh 0 = nQAm pin is inverted relative to QAm pin when in LVCMOS mode

1=n0Am and QAm pins are in-phase when in LVCMOS mode

Output driver mode of operation for output pair QAm, nQAm:
000 = high-mpedance

001 = LVPECL

010 = LVDS (default)

MODE_CQAm[2:0] RW 010b 011 = LVCMOS

100 = HCSL

101 = CML 400mV swing

110 = CML 800mV swing

111 = Reserved

Disable output pair QAm, nQAm:
0= Output pair QAm, nQAm is enabled (disable output bank using

DIS_Gm R ® SYNC_DISA to prevent runt pulses when enabling)
1= Output pair OAm, nQAm is powered-down
Rsvd R - Reserved. Always write 0 to this bit location. Read values are not defined.

24758 05 K
FrESHIE 6-9:

bankB f5il, 4% bankB {5 54 HAE A E.

Address (Hex) D7 D6 D5 D4 D3 D2 D1 Do
B Rsvd TERM_B Rsvd Rsvd Rsvd Rsvd
7 Rsvd MODE_QB3[2:0] MODE_QB2[2:0]
8 Rsvd MODE_QB1[2:0] MODE_QB0[2:0]
9 DIS QB3 | DIS.QB2 | DISQB1 | DIS QBO Rsvd
WA 6~9

i bankB i AR B 42 1108 QBO. NQBO, [R5 27 (7 e bk 8 ¥
5 2~0 f7, WE bankB #i {55 QB0. NQBO [k s, 5 2417 s tdik 9

(RIEAR A 4 A7 0 {2 QBO. NQBO % B T], H Ak T prox

Bit Field Name Field Type Default Value Description

Indicates termination used on Bank B outputs when HCSL mode is selected:
TERM_B RW 0b 0=330y 5002
1=5002

Output driver mode of operation for output pair QBm, nQBm:
000 = high4mpedance

001=LVPECL

010 = LVDS (default)

MODE_QBm({2:0] RW 010b 011 = Rsvd

100 = HCSL

101 = CML 400mV swing

110 = CML 800mV swing

111 = Reserved

Disable output pair QBm, nQBm:
0= Qutput pair QBm, nQBm is enabled (disable output bank using

DIS_GBm B o SYNC_DISE to prevent runt pulses when enabling)
1= Qutput pair QBm, nQBm is powered-down
Rsvd R - Reserved. Always write 0 to this bit location. Read values are not defined.

AL 60 HHE B
it A-B:
LA A bl A~B {RE .
st C-F:

] 73 BES e S S I L

Address (Hex) o7 D6 D5 D4 D3 D2 D1 Do
c DIVA[7-0]
D DIVE[7:0]
E Rsvd DIVB(8] DIVA[S]
F Rsvd
Bit Field Name Field Type Default Value Description
Divider ratio for Bank A outputs:
00h— 01h = Bypass divider and pass reference clock directly to the Bank A
DIVA[8:0] RMW 000h outputs

02h— 1FFh = ratio to be used by the A divider is value written here. For
example writing a 4 in this field will results in a divide ratio of 4 being used.

Divider ratio for Bank B outputs:
00h — 01h = Bypass divider and pass reference dock directly to the Bank B
DIVB[8:0] RW 000h outputs

02h — 1FFh = ratio to be used by the B divider is value written here. For
example writing a 4 in this field will results in a divide ratio of 4 being used.

Rsvd RIW - Reserved. Always write 0 to this bit location. Read values are not defined.

T AE 48 C~F JSHE i

FAE el C HUEE S 7~0 A, FFAFdsibdl E M5 28 0 A7 4%] bankA % H

P

Bkt .

A AL D BEE S 7~0 fn, WAE G E BOBESE 1 A7) bankB f % H

P

Bkt .

27.5. SKIRARRS T

SERGE I 12C Pl e B A A7 A R L 0, Horh S AR A A C~F 4
bankA. bankB fith I BRI SRR, ap £ a8k 2~5. 6~9 %] bankA. bankB
A E SR R fEBE . RAAT AN RIES % 8P79818 HHFH-

RIS PR L & 9 LVDS {55, 23 BFEEJY 2, bankA 5 bankB Xf b7y 42

F R 49 CLKO. NCLKO i A4

TRJZAEHIN T P -

module div_test(
input clk ,
input rst_n :
input sdo 9
output cs /* synthesis PAP_MARK_DEBUG="true" */,
output scl /* synthesis PAP_MARK_DEBUG="true" */,
inout sdi /* synthesis PAP_MARK_DEBUG="true" */,
output mode /* synthesis PAP_MARK_DEBUG="true" */,
output clk_sel /* synthesis PAP_MARK_DEBUG="true" */,
output clk n /* synthesis PAP_MARK DEBUG="true" */,
output clk p

);

parameter sys clk _fre = 26'd50_000 000 ;
parameter time_10ms = sys clk fre/100 ;

reg [15:0]data_init /* synthesis PAP_MARK_DEBUG="true" */;
reg [4:0]cnt_init /* synthesis PAP_MARK DEBUG="true" */;
reg start /* synthesis PAP_MARK_DEBUG="true" */;

reg [25:0]cnt_delay /* synthesis PAP_MARK DEBUG="true" */,

wire rst_delay /* synthesis PAP_MARK_DEBUG="true" */;

reg rst_delay ri ;

reg rst_delay r2 ;

wire byte_over /* synthesis PAP_MARK_DEBUG="true" */;

wire [7:0]data_out /* synthesis PAP_MARK_DEBUG="true" */;
reg reg_byte over /* synthesis PAP_MARK_DEBUG="true" */;

assign mode = 1'b0 ;
assign clk _sel = 1'be ;
assign cs = 1'bo ;
assign clk n = ~clk ;
assign clk_p = clk ;

always @(posedge clk) begin
if (~rst_n)
cnt_delay <= 26'do ;
else if (cnt_delay >= time_10ms)
cnt_delay <= cnt_delay ;
else
cnt_delay <= cnt_delay + 26'd1l ;
end

assign rst_delay = (cnt_delay >= time_1@ms - 26'd1e) ? 1'bl :

always @(posedge clk) begin
if (~rst_n) begin
rst_delay_rl <= 1'bO ;
rst_delay_r2 <= 1'b0 ;
reg_byte_over <= 1'b0 ;
end
else begin
rst_delay rl <= rst_delay ;
rst_delay r2 <= rst_delay ri ;
reg_byte over <= byte over ;
end
end

iic_dri #(
.CLK_FRE (27'd50_oe0_000),
.IIC_FREQ (20'd400_000)s

1'bo

.T_WR (10'ds),
.DEVICE_ID (8'b1101_1000)»
.ADDR_BYTE (2'd1),
.LEN_WIDTH (8'd4),
.DATA_BYTE (2'd1)
Yiic_dri(
.clk (clk)
.rstn (rst_delay)
.pluse (start),
w_r (1),
.byte_len (5'die)
.addr (data_init[15:8]),
.data_in (data_init[7:0]),
.busy ()
.byte_over (byte over),
.data_out (data_out)
.scl (scl),
.sda_in (sda_in)
.sda_out (sda_out)
.sda_out_en (sda_out_en)
)s
assign sdi = sda_out_en ? sda_out : 1'bz;
assign sda_in = sdi;
Y REGISTER CONFIG-------==--==----

always @(posedge clk) begin
case (cnt_init)

0

W 00 N O VT » W N B

[N ==
w N R o

14 .
15 g
defaul

endcase

data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init
data_init

t: data_init

16'hoo10
16'h0100
16'h0200
16'he312
16'he412
16'hO5E0
16'h0600
16'he712
16'he812
16 'h@9E0O
16 'hoA00O
16 'hoBo0O
16'hecCo2
16 'heDo2

16'hOEGO ;
16'hoFo0 ;
<= 16'h0000 ;

bl

bl

3

end

always @(posedge clk) begin
if (~rst_delay)
cnt_init <= 5'do ;
else if (cnt_init == 5'di16)
cnt_init <= cnt_init ;
else if (byte_over)
cnt_init <= cnt_init + 5'dl ;
end

always @(posedge clk) begin
if (~rst_delay)
start <= 1'b0 ;
else if ((rst_delay ri1)&&(~rst_delay r2))
start <= 1'bl ;
// else if ((reg_byte over)&&(cnt_1init <= 5'd15))
// start <= 1'b1 ;
else
start <= 1'b0 ;
end

endmodule

R2C JEAF AT Frs:

“timescale 1ns / 1ps
“define UD #1
module iic_dri #(

parameter CLK_FRE = 27'd50_000_000, //system clock
frequency

parameter IIC_FREQ = 20'd400_000, //I2c clock frequency

parameter T WR =10'd5, //I2c transmit delay ms

parameter DEVICE_ID = 8'hA0, //I2C slave port device
ID

parameter ADDR_BYTE = 2'd1, //I2C addr byte number

parameter LEN_WIDTH = 8'd3, //I2C transmit byte
width

parameter DATA_BYTE = 2'd1 //I2C data byte number
)(

input clk,

input rstn,

input pluse, //I2C transmit trigger

input w_r, //I2C transmit

direction 1:send ©:receive

input [LEN_WIDTH:@] byte_len, //I2C transmit data
byte Llength of once trigger

input [7:0] addr, //I2C transmit addr

input [7:0] data_in, //I2C send data

output reg busy=0, //I2C bus status

output reg byte over=0, //I2C byte transmit
over flag

output [7:0] data_out, //I2C receive data

output scl,

input sda_in,

output reg sda_out=1'b1,

output sda_out_en

);

localparam CLK_DIV =

CLK_FRE/IIC_FREQ; // 99900 OOGOOOOO 6000000660
localparam ID_ADDR_BYTE = ADDR_BYTE + 1'bl;// @ @ & @deviceIlD§ €& &
localparam DATA_SET = CLK_DIV>>2;// @ @ @data @ /)¢ &
localparam T_WR_DELAY = T_WR*CLK_FRE/1000;

// 1ic clock time counter
reg [20:0] fre_cnt;//=21"'do;
always @(posedge clk)
begin
if(!rstn)
fre_cnt <= "UD 21'de;
else if(fre_cnt == CLK_DIV - 1'b1)
fre_cnt <= "UD 21'de;
else
fre_cnt <= "UD fre_cnt + 1'b1;
end

wire full_cycle;

wire half cycle;

assign full cycle = (fre_cnt == CLK_ DIV - 1'bl) ? 1'bl :
1'be; //SCLOGOOPO19OSCLOOOO OO

assign half_cycle = (fre_cnt == (CLK_DIV>>1'bl) - 1'bl) ? 1'bl :
1'b0;//SCLOY% O G €1/20 9SCLOG S OO &

wire start_h;

wire dsu;

assign start_h = (fre_cnt == DATA_SET - 1'bl) ? 1'bl : 1'b0;
//90 ‘00 SDAGY \0O 001/400CLOOGO OO

assign dsu = (fre_cnt == (CLK_DIV>>1'b1l) + DATA SET - 1'b1l) ? 1'bl : 1'be@;
/00O OOPOPOOSDAGIIAPIG3/19OSCLOGOOAH

//pluse trige the iic bus transmit start
wire start;

reg start_en;

reg pluse_1d,pluse_2d,pluse 3d;
always @(posedge clk)

begin
if(!rstn)
begin
pluse_1d <= "UD 1'b@o;
pluse_2d <= "UD 1'bo;
pluse_3d <= "UD 1'b0o;
end
else
begin
pluse_1d <= "UD pluse ;
pluse_2d <= “UD pluse_1d;// & &
pluse 3d <= “UD pluse 2d;//d& & & ¢ & &
end
end

always @ (posedge clk)
begin
if(start || (!rstn))// 00’ 00’ 0092600690
start_en <= "UD 1'b@;
else if(~pluse_3d & pluse_2d)// 966 €6 ¢
start_en <= "UD 1'bl;
else
start_en <= "UD start_en;
end

assign start = (start_en & full cycle) ? 1'bl : 1'b0;

reg w_r_1d=1'bo,w_r_2d=1'b0o;
always @(posedge clk)
begin

if(!rstn)

begin
w_r_1d <= “UD 1'be;
w_r_2d <= "UD 1'b0;
end
else
begin
w_r_1d <= “UD w_r;
w_r_2d <= "UD w_r_1d;
end

localparam IDLE = 3'de;
localparam S_START= 3'd1;

localparam SEND = 3'd2;
localparam S_ACK = 3'd3;
localparam RECEIV = 3'd4;
localparam R_ACK = 3'd5;

localparam STOP = 3'd6;
reg [2:0] state;

reg [2:0] state_n;

reg [2:0] trans_bit = 3'de;

reg [LEN_WIDTH :0] trans_byte = 5'de;

reg [LEN_WIDTH :0] trans_byte max = 5'do;
reg restart = 1'b0;

reg [7:0] send data=8'do;

reg [7:0] receiv_data=8'de;

reg trans_en=0;

reg trans_over=0;

reg scl out= 1'bl;
// assign sda = sda _out _en ? sda out : 1'bz;
// assign sda_in = sda;

assign scl = scl out;

//transmit status
always @ (posedge clk)

//
//
//
//
//
//
//
//
//

begin
if(start)// 0000600660’ 06
trans_en <= "UD 1'b1l;
else if(state == STOP && start_h)// € €& HSTOPH O 666666
trans_en <= "UD 1'b0;
else
trans_en <= "UD trans_en;
end

always @(posedge clR)// & & & &
begin
if(start)
trans_over <= "UD 1'bo;
else if(state == STOP && start_h)
trans_over <= "UD 1'b1;
else

trans_over <= “UD trans_over;

// IIC Bus status
reg twr_en=0;
reg [26:0] twr_cnt=0;
always @(posedge clk)
begin
if(state == STOP && dsu)//STOP & &’ ¢ 6"
twr_en <= "UD 1'b1l;
else if(twr_cnt == T_WR_DELAY)// @ &" & @&5ms
twr_en <= "UD 1'be@;
else
twr_en <= "UD twr_en;
end

always @(posedge clk)

begin
if(twr_en)
begin
if(twr_cnt == T_WR_DELAY)// @ " & #5ms
twr_cnt <= "UD 1'b@;
else
twr_cnt <= "UD twr_cnt + 1'b1;
end

else

twr_cnt <= "UD twr_cnt;
end

always @(posedge clk)
begin
if(start_en) //@66ne’ 6666 HGbusy
busy <= “UD 1'bil;
else if(twr_cnt == T_WR_DELAY)//busy ¢ &" & & &
busy <= "UD 1'bo;
else
busy <= “UD busy;

//11ic bus controller
always @(posedge clk)
begin
if(trans_en)
begin
if(half_cycle || full _cycle)
scl out <= ~scl out;
else
scl out <= scl out;
end
else
scl out <= "UD 1'b1;
end

assign sda_out_en = ((state ==S_ACK) || (state == RECEIV)) ? 1'b@ : 1'b1;

//tx data control
always @(posedge clk)
begin
if(start)// ¢ ¢’ 0000 00] 000G 909H7 ID10G S
send_data <= "UD {DEVICE_ID[7:1],1'be};//{ &5
IDOGOPIOO } ©OOPOO 0]
else if(state == S_ACK && full cycle)
//QOSAK 90drO0OOPOOO] 060606060
begin
case(trans_byte)// 9606666
5'do : send data <= “UD {DEVICE ID[7:1],1'be};
5'dl : send data <= "UD addr[7:0];

5'd2 : send data <= "UD (w_r_2d) ? data_in :
{DEVICE_ID[7:1],1'b1};
default: send _data <= "UD data_in;
endcase
end
else
send_data <= "UD send_data;
end

//transmit byte number, contain device ID & @ADDR & @DATA
always @(posedge clk)

begin
if(start)
begin
if(w_r_2d)
trans_byte max <= “UD ADDR_BYTE + byte len + 2'd1;
else
trans_byte max <= “UD ADDR_BYTE + byte len + 2'd2;
end
else
trans_byte max <= “UD trans_byte max;
end

//sda out control
always @(posedge clk)
begin
case(state)
IDLE :// 6666 .
begin
sda_out <= "UD 1'b1l;
end
S START ://€6° .
begin
if(start_h)// 06’ 66 0666
sda_out <= "UD 1'b@;

else if(dsu)// 99O P OOSCLOGOPOOO6OOO
sda_out <= "UD send_data[7-trans_bit];// @ @&A&) €

else
sda_out <= "UD sda_out;
end
SEND
begin
sda_out <= “UD send_data[7-trans_bit];// @7
000 000°0:90

end
S_ACK :
begin
if(trans_byte == ID_ADDR_BYTE && dsu
&& lw_r_2d)// 900 9O 09OPOOOVP 00O OGO QOGS _START
sda_out <= “UD 1'b1;
else
sda_out <= “UD 1'heo;
end
R_ACK :
begin
if(trans_byte < trans_byte max)// & & & ¢ € €d - GACK
sda_out <= “UD 1'b0o;
else
begin
if(dsu)// 9GP PAKG PO OOOPOPOPOSTOP OGO O
OSDAG O YO
sda_out <= “UD 1'b0o;
else// 9P OO0 OO-0000OOOOO 610000=6¢
sda_out <= "UD 1'b1;
end
end
STOP
begin
if(start_h)//'66 €6
sda_out <= "UD 1'b1;
else
sda_out <= "UD sda_out;
end
default: sda_out <= "UD 1'bl;
endcase
end

// 11ic read data
always @(posedge clk)

begin
if(state == RECEIV)
begin
if(full_cycle)// 99909 OP 99009000060
receiv_data <= "UD {receiv_data[6:0],sda_in};
else
receiv_data <= "UD receiv_data;
end

else

receiv_data <= "UD 8'de;
end
reg [7:0]data_out_reg=8'do;
always @(posedge clk)
begin
if(!rstn)
data_out_reg <= "UD 8'do;
else if(state == RECEIV && trans_bit == 3'd7 &&
half_cycle)// 99 @ 9lbyte 9909 666006 606
data_out_reg <= "UD receiv_data;
else
data_out_reg <= "UD data_out_reg;
end
assign data_out=data_out_reg;
//one byte data transmit over flag
always @(posedge clk)
begin
if(w_r_2d)
begin
if(trans_byte > ID_ADDR_BYTE - 1'bl && dsu && trans_bit ==
3'd7)//00¢ ¢90./090 0000 ©H66"
byte over <= "UD 1'bl;
else
byte over <= "UD 1'b@;
end
else
begin
if(trans_byte > ID_ADDR_BYTE && dsu && trans_bit ==
3'd7)//00 9. 99 PIDOOO $OOO Y66
byte over <= "UD 1'bl;
else
byte over <= "UD 1'b@;
end
end

always @(posedge clk)

begin
if(state == SEND || state == RECEIV)
begin
if(dsu)
trans_bit <= "UD trans_bit + 1'bl;
else

trans_bit <= “UD trans_bit;
end

end

else
trans_bit <= “UD 3'de;

always @(posedge clk)
begin

if(start)//y 9o’ 990G 9P OPyte9 OGO
trans_byte <= "UD 5'do;
else if(state == SEND || state == RECEIV)// @90 #HCHH &6
begin
if(dsu & trans_bit == 3'd7)// 00 ¢ €& Slbytc" 90666661
trans_byte <= "UD trans_byte + 1'b1;
else// 9906"9 6 .
trans_byte <= “UD trans_byte;
end

else// 99 00"0 6 .
trans_byte <= "UD trans_byte;

always @(posedge clk)

begin
if(!rstn)
state <= "UD IDLE;
else
state <= "UD state n;
end

// next state set

always @(*)
begin

state_n = state;
case(state)
IDLE
begin
if(start)
state_n = S_START;
else
state_n = state;

end

S_START :

begin
// if(full_cycle && trans_byte == 3'd0)
// Q00O OOOr0O
// state_n = SEND;
// else if(!w_r_2d && trans_byte == ID ADDR BYTE &&
dsu)// 9909900 6060
// state_ n = SEND;
if(dsu)
state_n = SEND;
else
state_n = state;
end
SEND
begin
if(trans_bit == 3'd7 & dsu)
state_n = S_ACK;
else
state_n = state;
end
S_ACK :
begin
if(dsu)// & sda_1in)
begin
if(w_r_2d)
begin

if(trans_byte < ID_ADDR_BYTE)//0 ¢ € ID+ADDR
state_n = SEND;
else if(trans_byte < trans_byte_max)//0¢ & ¢ ¢ ¢ ¢
state_n = SEND;
else//0G9 99 OGO OO
state_n = STOP;
end
else
begin
if(trans_byte < ID_ADDR_BYTE)//0 ¢ € ID+ADDR
state_n = SEND;
else if(trans_byte ==
ID_ADDR_BYTE)// 99 @: ¢’ 9 909 @IDO/ 19 H A
state_n = S_START,;
else// 90069 .
state_n = RECEIV;
end
end

else
state_n = state;
end
RECEIV:
begin
if(trans_bit == 3'd7 & dsu)
state_n = R_ACK;
else
state_n = state;

end
R_ACK :
begin
if(dsu)
begin
if(trans_byte < trans_byte_max)
state_n = RECEIV;
else
state_n = STOP;
end
else
state_n = state;
end
STOP
begin
if(dsu)
state_n = IDLE;
else
state_n = state;
end
default: state_n = IDLE;
endcase
end
//==//
endmodule

27.6. LR

586 S SOMHz I BB 70, WIS B o0 AR B Y 25MHz 2273 I

B SEIPLRAE RIS B AR ILEE

	27.分频器实验例程说明
	27.1.实验简介
	27.2.实验目的
	27.3.实验使用模块介绍
	27.4.模块寄存器配置过程简介
	27.4.1.使用SPI配置寄存器：
	27.4.2.使用I2C配置寄存器：
	27.4.3.模块寄存器简介

	27.5.实验代码设计
	27.6.实验现象

