
27. 分频器实验例程说明

27.1. 实验简介

实验使用“小眼睛科技”FPGA开发板与分频器模块，时钟频率的二分频操

作。

27.2. 实验目的

使用分频器完成二分频操作。

27.3. 实验使用模块介绍

实验使用“小眼睛科技”的分频器模块，模块搭载芯片型号为：8P79818，

可使用 SPI或 I2C对分频器芯片进行寄存器配置，模块接口部分原理图如下图所

示：

模块芯片连接原理图如下图所示，模块时钟输入连接到分频器芯片 CLK0，

NCLK0接口，模块分频输出连接到芯片输出信号 QA0、NQA0、QB0、NQBO，

芯片内部共两个 bank，分别为 bankA、bankB，相同 bank分频出的时钟频率是

一致的，因此模块分别保留了 bankA的一对输出 QA0、NQA0，bankB的一对输

出 QB0、NQBO，作为模块时钟输出。

通过配置分频器芯片寄存器，可以控制输出使能、分频系数、输出时钟信号

类型灯参数。配置寄存器可使用 SPI或 I2C通信协议。

模块接口部分原理图中的 SPI信号为高电平时，为 SPI协议配置寄存器模式；

为低电平时，为 I2C协议配置寄存器模式。

使用 SPI协议配置寄存器时，CS为片选信号，SDI为分频芯片 SPI输入信号，

SDO为分频芯片 SPI输出信号，SCLK为时钟输入。

使用 I2C 协议配置寄存器时，器件地址为 110110x，其中 x 为由 CS信号决

定，CS为高电平时，器件地址为 1101101，CS为低电平时，器件地址为 1101100；

此时 SDO信号不使用，SDI信号为 I2C数据线，SCLK信号为 I2C时钟线。

CLK_N与 CLK_P信号为模块的输入时钟信号，分频器模块将在此时钟基础

上进行分频操作，分频范围为 2~511。

另外，在寄存器配置时，需要选择参考时钟控制方式，即通过寄存器控制选

择 bankA与 bankB的参考时钟 CLK0、NCLK0还是 CLK1、NCLK1，还是通过

输入引脚 CLK_SEL 控制选择 bankA 与 bankB的参考时钟 CLK0、NCLK0 还是

CLK1、NCLK1。由于在模块的硬件设计上，将模块的输入时钟连接在分频器芯

片 CLK0、NCLK0 接口上，因此使用寄存器作为参考时钟控制方式，不再使用

CLK_SEL。

模块搭载分频器芯片 8P79818，芯片框架如下图所示：

分频器芯片共有两个 bank，每个 bank对应一个分频，每个 bank有 4对时钟

输出，且输出频率相同。因此模块仅连接分频器芯片 bankA、bankB的各一对输

出。

OE信号为高电平时，输出由寄存器配置，OE为低电平时，输出为高阻抗状

态，因此模块对 OE信号再硬件上进行上拉。

27.4. 模块寄存器配置过程简介

模块搭载的分频器芯片对应的寄存器地址范围为 0~F，每个寄存器地址对应

8bit寄存器数据。寄存器配置详情请参考 8P79818 数据手册。

27.4.1.使用 SPI配置寄存器：

使用 SPI配置寄存器时，需首先将模块 SPI信号置 1，发送数据时，发送的

第 1bit数据为读写控制位，置 1时，芯片执行读操作，置 0时芯片执行写操作。

在读写控制位后输入一个地址，数据会依此地址位起点，自动填入后面的寄存器

地址或从寄存器中取出数据。

读操作顺序如下图所示，注意低位在前：

写操作顺序如下图所示，注意低位在前：

读写操作时序如下所示：

使用 SPI配置此芯片时，支持的最大时钟频率为 50MHz。

27.4.2.使用 I2C配置寄存器：

使用 I2C配置寄存器时，需首先将模块 SPI信号置 0，芯片作为 I2C从机，

其器件地址为 110110x，其中 x由 CS信号决定，CS信号为高电平时，器件地址

为 1101101，CS信号为低电平时，器件地址为 1101100；使用的 I2C时钟频率为

100KHz或 400KHz。

传输寄存器数据时，寄存器地址为写入或者读取的第一个寄存器地址，第一

字节数据对应写入或者读取第一个寄存器地址，第二字节数据对应写入或者读取

第一个寄存器地址的下一个寄存器地址，第三字节数据对应写入或者读取第一个

寄存器地址的下下一个寄存器地址，依次类推，即仅写入一个地址，数据会依此

地址位起点，自动填入后面的寄存器地址或从寄存器中取出数据。

相应的读写时序如下图所示：

I2C写时序详细框图如下所示（每次传输 8bit数据，其中 8bit中高位先发）：

I2C读时序详细框图如下所示（每次传输 8bit数据，其中 8bit中高位先发）：

27.4.3.模块寄存器简介

模块搭载的分频器芯片对应的寄存器地址范围为 0~F，每个寄存器地址对应

8bit寄存器数据。寄存器配置详情请参考 8P79818 数据手册。

寄存器地址 0-1：

器件控制寄存器，配置为 0：8’h10，1：8’h00即可。

寄存器地址 2-5：

bankA控制，控制 bankA信号输出模式等信息。

寄存器地址 2~5

模块 bankA 输出保留的接口为 QA0、NQA0，因此控制寄存器地址 4 的数据第

2~0位，设置 bankA输出信号 QA0、NQA0的输出模式，控制寄存器地址 5的数

据第 4位为 0使能 QA0、NQA0输出即可，具体模式如下所示：

其他寄存器数据保持默认即可。

寄存器 2~5数据说明

寄存器地址 6-9：

bankB控制，控制 bankB信号输出模式等信息。

寄存器 6~9

模块 bankB输出保留的接口为 QB0、NQB0，因此控制寄存器地址 8的数据

第 2~0 位，设置 bankB 输出信号 QB0、NQB0 的输出模式，控制寄存器地址 9

的数据第 4位为 0使能 QB0、NQB0输出即可，具体模式如下所示

寄存器 6~9数据说明

寄存器地址 A-B：

该寄存器地址 A~B保留。

寄存器地址 C-F：

控制分频器输出信号的分频比。

寄存器 C~F及数据说明

寄存器地址 C的数据第 7~0位、寄存器地址 E的数据第 0位控制 bankA的输出

分频比。

寄存器地址 D的数据第 7~0位、寄存器地址 E的数据第 1位控制 bankB的输出

分频比。

27.5. 实验代码设计

实验通过 I2C 协议配置寄存器来控制模块分频，其中寄存器地址 C~F 控制

bankA、bankB输出时钟的分频比率，寄存器地址 2~5、6~9控制 bankA、bankB

的输出信号类型以及使能。具体寄存器内容请参考 8P79818 数据手册。

代码两对输出配置为 LVDS信号，分屏比为 2，bankA与 bankB对应分频参

考时钟均为 CLK0、NCLK0输入时钟。

顶层模块如下所示：

module div_test(
input clk ,
input rst_n ,
input sdo ,
output cs /* synthesis PAP_MARK_DEBUG="true" */,
output scl /* synthesis PAP_MARK_DEBUG="true" */,
inout sdi /* synthesis PAP_MARK_DEBUG="true" */,
output mode /* synthesis PAP_MARK_DEBUG="true" */,
output clk_sel /* synthesis PAP_MARK_DEBUG="true" */,
output clk_n /* synthesis PAP_MARK_DEBUG="true" */,
output clk_p
);

parameter sys_clk_fre = 26'd50_000_000 ;
parameter time_10ms = sys_clk_fre/100 ;

reg [15:0]data_init /* synthesis PAP_MARK_DEBUG="true" */;
reg [4:0]cnt_init /* synthesis PAP_MARK_DEBUG="true" */;
reg start /* synthesis PAP_MARK_DEBUG="true" */;
reg [25:0]cnt_delay /* synthesis PAP_MARK_DEBUG="true" */;

wire rst_delay /* synthesis PAP_MARK_DEBUG="true" */;
reg rst_delay_r1 ;
reg rst_delay_r2 ;
wire byte_over /* synthesis PAP_MARK_DEBUG="true" */;
wire [7:0]data_out /* synthesis PAP_MARK_DEBUG="true" */;
reg reg_byte_over /* synthesis PAP_MARK_DEBUG="true" */;
//------------------------OUTPUT SIGNAL----------------------------//

assign mode = 1'b0 ;
assign clk_sel = 1'b0 ;
assign cs = 1'b0 ;
assign clk_n = ~clk ;
assign clk_p = clk ;

//-----------------------TIME DELAY-------------------------------//

always @(posedge clk) begin
if (~rst_n)

cnt_delay <= 26'd0 ;
else if (cnt_delay >= time_10ms)

cnt_delay <= cnt_delay ;
else

cnt_delay <= cnt_delay + 26'd1 ;
end

assign rst_delay = (cnt_delay >= time_10ms - 26'd10) ? 1'b1 : 1'b0 ;

always @(posedge clk) begin
if (~rst_n) begin

rst_delay_r1 <= 1'b0 ;
rst_delay_r2 <= 1'b0 ;
reg_byte_over <= 1'b0 ;

end
else begin

rst_delay_r1 <= rst_delay ;
rst_delay_r2 <= rst_delay_r1 ;
reg_byte_over <= byte_over ;

end
end

//-------------------------CONFIG IIC------------------------//
iic_dri #(

.CLK_FRE (27'd50_000_000),

.IIC_FREQ (20'd400_000),

.T_WR (10'd5),

.DEVICE_ID (8'b1101_1000),

.ADDR_BYTE (2'd1),

.LEN_WIDTH (8'd4),

.DATA_BYTE (2'd1)
)iic_dri(

.clk (clk),

.rstn (rst_delay),

.pluse (start),

.w_r (1),

.byte_len (5'd16),

.addr (data_init[15:8]),

.data_in (data_init[7:0]),

.busy (),

.byte_over (byte_over),

.data_out (data_out),

.scl (scl),

.sda_in (sda_in),

.sda_out (sda_out),

.sda_out_en (sda_out_en)
);

assign sdi = sda_out_en ? sda_out : 1'bz;
assign sda_in = sdi;

//-----------------REGISTER CONFIG----------------//
always @(posedge clk) begin

case (cnt_init)
0 : data_init <= 16'h0010 ;
1 : data_init <= 16'h0100 ;
2 : data_init <= 16'h0200 ;
3 : data_init <= 16'h0312 ;
4 : data_init <= 16'h0412 ;
5 : data_init <= 16'h05E0 ;
6 : data_init <= 16'h0600 ;
7 : data_init <= 16'h0712 ;
8 : data_init <= 16'h0812 ;
9 : data_init <= 16'h09E0 ;
10 : data_init <= 16'h0A00 ;
11 : data_init <= 16'h0B00 ;
12 : data_init <= 16'h0C02 ;
13 : data_init <= 16'h0D02 ;
14 : data_init <= 16'h0E00 ;
15 : data_init <= 16'h0F00 ;
default: data_init <= 16'h0000 ;

endcase

end

always @(posedge clk) begin
if (~rst_delay)

cnt_init <= 5'd0 ;
else if (cnt_init == 5'd16)

cnt_init <= cnt_init ;
else if (byte_over)

cnt_init <= cnt_init + 5'd1 ;
end

always @(posedge clk) begin
if (~rst_delay)

start <= 1'b0 ;
else if ((rst_delay_r1)&&(~rst_delay_r2))

start <= 1'b1 ;
// else if ((reg_byte_over)&&(cnt_init <= 5'd15))
// start <= 1'b1 ;

else
start <= 1'b0 ;

end

endmodule

I2C通信模块如下所示：

`timescale 1ns / 1ps
`define UD #1
module iic_dri #(

parameter CLK_FRE = 27'd50_000_000, //system clock
frequency

parameter IIC_FREQ = 20'd400_000, //I2c clock frequency
parameter T_WR = 10'd5, //I2c transmit delay ms
parameter DEVICE_ID = 8'hA0, //I2C slave port device

ID
parameter ADDR_BYTE = 2'd1, //I2C addr byte number
parameter LEN_WIDTH = 8'd3, //I2C transmit byte

width
parameter DATA_BYTE = 2'd1 //I2C data byte number

)(
input clk,
input rstn,
input pluse, //I2C transmit trigger
input w_r, //I2C transmit

direction 1:send 0:receive

input [LEN_WIDTH:0] byte_len, //I2C transmit data
byte length of once trigger

input [7:0] addr, //I2C transmit addr
input [7:0] data_in, //I2C send data

output reg busy=0, //I2C bus status
output reg byte_over=0, //I2C byte transmit

over flag

output [7:0] data_out, //I2C receive data

output scl,
input sda_in,
output reg sda_out=1'b1,
output sda_out_en

);

localparam CLK_DIV =
CLK_FRE/IIC_FREQ; //������������� ������ʱ����

localparam ID_ADDR_BYTE = ADDR_BYTE + 1'b1;//�� ��deviceID� ���
localparam DATA_SET = CLK_DIV>>2;//���data�仯λ��
localparam T_WR_DELAY = T_WR*CLK_FRE/1000;

// iic clock time counter
reg [20:0] fre_cnt;//=21'd0;
always @(posedge clk)
begin

if(!rstn)
fre_cnt <= `UD 21'd0;

else if(fre_cnt == CLK_DIV - 1'b1)
fre_cnt <= `UD 21'd0;

else
fre_cnt <= `UD fre_cnt + 1'b1;

end

wire full_cycle;
wire half_cycle;
assign full_cycle = (fre_cnt == CLK_DIV - 1'b1) ? 1'b1 :

1'b0; //SCL�����1�أ��SCL����λ��
assign half_cycle = (fre_cnt == (CLK_DIV>>1'b1) - 1'b1) ? 1'b1 :

1'b0;//SCL�½��1/2�أ��SCL����λ��

wire start_h;

wire dsu;
assign start_h = (fre_cnt == DATA_SET - 1'b1) ? 1'b1 : 1'b0;

//��ʼͣ�� SDA�� λ�� ��1/4��SCL����λ��
assign dsu = (fre_cnt == (CLK_DIV>>1'b1) + DATA_SET - 1'b1) ? 1'b1 : 1'b0;

//��� ������SDA�仯λ�ã�3/4��SCL����λ��

//==
==========

//pluse trige the iic bus transmit start
wire start;
reg start_en;
reg pluse_1d,pluse_2d,pluse_3d;
always @(posedge clk)
begin

if(!rstn)
begin

pluse_1d <= `UD 1'b0;
pluse_2d <= `UD 1'b0;
pluse_3d <= `UD 1'b0;

end
else
begin

pluse_1d <= `UD pluse ;
pluse_2d <= `UD pluse_1d;//�ͬ�
pluse_3d <= `UD pluse_2d;//ȡ������

end
end

always @ (posedge clk)
begin

if(start || (!rstn))//��ʼ��ʼʹ���ź�����
start_en <= `UD 1'b0;

else if(~pluse_3d & pluse_2d)//������
start_en <= `UD 1'b1;

else
start_en <= `UD start_en;

end

assign start = (start_en & full_cycle) ? 1'b1 : 1'b0;

reg w_r_1d=1'b0,w_r_2d=1'b0;
always @(posedge clk)
begin

if(!rstn)

begin
w_r_1d <= `UD 1'b0;
w_r_2d <= `UD 1'b0;

end
else
begin

w_r_1d <= `UD w_r;
w_r_2d <= `UD w_r_1d;

end
end

//==
========

// IIC FSM STATE
//==

========
localparam IDLE = 3'd0;
localparam S_START= 3'd1;
localparam SEND = 3'd2;
localparam S_ACK = 3'd3;
localparam RECEIV = 3'd4;
localparam R_ACK = 3'd5;
localparam STOP = 3'd6;
reg [2:0] state;
reg [2:0] state_n;
reg [2:0] trans_bit = 3'd0;

reg [LEN_WIDTH :0] trans_byte = 5'd0;
reg [LEN_WIDTH :0] trans_byte_max = 5'd0;
reg restart = 1'b0;
reg [7:0] send_data=8'd0;
reg [7:0] receiv_data=8'd0;
reg trans_en=0;
reg trans_over=0;
reg scl_out= 1'b1;

// assign sda = sda_out_en ? sda_out : 1'bz;
// assign sda_in = sda;

assign scl = scl_out;

//==
==========

//transmit status
always @ (posedge clk)

begin
if(start)//���������ʼ��

trans_en <= `UD 1'b1;
else if(state == STOP && start_h)//����STOP�� ������

trans_en <= `UD 1'b0;
else

trans_en <= `UD trans_en;
end

// always @(posedge clk)//����
// begin
// if(start)
// trans_over <= `UD 1'b0;
// else if(state == STOP && start_h)
// trans_over <= `UD 1'b1;
// else
// trans_over <= `UD trans_over;
// end

//==
=========

// IIC Bus status
reg twr_en=0;
reg [26:0] twr_cnt=0;
always @(posedge clk)
begin

if(state == STOP && dsu)//STOP �̬�ʼ��ʱ
twr_en <= `UD 1'b1;

else if(twr_cnt == T_WR_DELAY)//��ʱ��5ms
twr_en <= `UD 1'b0;

else
twr_en <= `UD twr_en;

end

always @(posedge clk)
begin

if(twr_en)
begin

if(twr_cnt == T_WR_DELAY)//��ʱ��5ms
twr_cnt <= `UD 1'b0;

else
twr_cnt <= `UD twr_cnt + 1'b1;

end
else

twr_cnt <= `UD twr_cnt;
end

always @(posedge clk)
begin

if(start_en) //���տ�ʼ �����busy
busy <= `UD 1'b1;

else if(twr_cnt == T_WR_DELAY)//busy��ʱ���
busy <= `UD 1'b0;

else
busy <= `UD busy;

end

//==
==========

//iic bus controller
always @(posedge clk)
begin

if(trans_en)
begin

if(half_cycle || full_cycle)
scl_out <= ~scl_out;

else
scl_out <= scl_out;

end
else

scl_out <= `UD 1'b1;
end

assign sda_out_en = ((state == S_ACK) || (state == RECEIV)) ? 1'b0 : 1'b1;

//tx data control
always @(posedge clk)
begin

if(start)//��ʼ����ʱ��ǰ ����һ���豸 ID+д��
send_data <= `UD {DEVICE_ID[7:1],1'b0};//{�豸

ID����д�� } �����λ��ǰ
else if(state == S_ACK && full_cycle)

//��SACK �̬�ȡһ������ǰ ������
begin

case(trans_byte)//������� 仯

5'd0 : send_data <= `UD {DEVICE_ID[7:1],1'b0};
5'd1 : send_data <= `UD addr[7:0];

5'd2 : send_data <= `UD (w_r_2d) ? data_in :
{DEVICE_ID[7:1],1'b1};

default: send_data <= `UD data_in;
endcase

end
else

send_data <= `UD send_data;
end

//transmit byte number,contain device ID��ADDR��DATA
always @(posedge clk)
begin

if(start)
begin

if(w_r_2d)
trans_byte_max <= `UD ADDR_BYTE + byte_len + 2'd1;

else
trans_byte_max <= `UD ADDR_BYTE + byte_len + 2'd2;

end
else

trans_byte_max <= `UD trans_byte_max;
end

//sda out control
always @(posedge clk)
begin

case(state)
IDLE ://���� ̬
begin

sda_out <= `UD 1'b1;
end
S_START ://��ʼ ̬
begin

if(start_h)//��ʼ�� ����
sda_out <= `UD 1'b0;

else if(dsu)//������SCL������ǰ����
sda_out <= `UD send_data[7-trans_bit];//��λ�ȷ�

else
sda_out <= `UD sda_out;

end
SEND :
begin

sda_out <= `UD send_data[7-trans_bit];//�仯

��� ���λ�ȷ�

end
S_ACK :
begin

if(trans_byte == ID_ADDR_BYTE && dsu
&& !w_r_2d)//�� �̬µ� ������ɣ� S_START���ڶ������

sda_out <= `UD 1'b1;
else

sda_out <= `UD 1'h0;
end
R_ACK :
begin

if(trans_byte < trans_byte_max)//������ȡ�ظ�ACK
sda_out <= `UD 1'b0;

else
begin

if(dsu)//����ACK����������STOP �̬���ǰ�
�SDA����

sda_out <= `UD 1'b0;
else//�������ټ���������ʾ�л����䷽��

sda_out <= `UD 1'b1;
end

end
STOP :
begin

if(start_h)//ͣ�� ��
sda_out <= `UD 1'b1;

else
sda_out <= `UD sda_out;

end
default: sda_out <= `UD 1'b1;

endcase
end

// iic read data
always @(posedge clk)
begin

if(state == RECEIV)
begin

if(full_cycle)//������λ�ý�����������
receiv_data <= `UD {receiv_data[6:0],sda_in};

else
receiv_data <= `UD receiv_data;

end
else

receiv_data <= `UD 8'd0;
end
reg [7:0]data_out_reg=8'd0;
always @(posedge clk)
begin

if(!rstn)
data_out_reg <= `UD 8'd0;

else if(state == RECEIV && trans_bit == 3'd7 &&
half_cycle)//����1byte��� ���� ���

data_out_reg <= `UD receiv_data;
else

data_out_reg <= `UD data_out_reg;
end
assign data_out=data_out_reg;
//one byte data transmit over flag
always @(posedge clk)
begin

if(w_r_2d)
begin

if(trans_byte > ID_ADDR_BYTE - 1'b1 && dsu && trans_bit ==
3'd7)//д�� ��ɺ��ٴ���� ��б�ʶ

byte_over <= `UD 1'b1;
else

byte_over <= `UD 1'b0;
end
else
begin

if(trans_byte > ID_ADDR_BYTE && dsu && trans_bit ==
3'd7)//д��ڶ���ID���ٴ���� ��б�ʶ

byte_over <= `UD 1'b1;
else

byte_over <= `UD 1'b0;
end

end

always @(posedge clk)
begin

if(state == SEND || state == RECEIV)
begin

if(dsu)
trans_bit <= `UD trans_bit + 1'b1;

else
trans_bit <= `UD trans_bit;

end

else
trans_bit <= `UD 3'd0;

end

always @(posedge clk)
begin

if(start)//ÿ�ο�ʼ����ʱ����byte����
trans_byte <= `UD 5'd0;

else if(state == SEND || state == RECEIV)//��д �̬�Ҫ����
begin

if(dsu && trans_bit == 3'd7)//������1byteʱ������1
trans_byte <= `UD trans_byte + 1'b1;

else//����ʱ� � ̬
trans_byte <= `UD trans_byte;

end
else//����ʱ� � ̬

trans_byte <= `UD trans_byte;
end

//==
========

// IIC FSM STATE CHANGE
//==

========
always @(posedge clk)
begin

if(!rstn)
state <= `UD IDLE;

else
state <= `UD state_n;

end

// next state set
always @(*)
begin

state_n = state;
case(state)

IDLE :
begin

if(start)
state_n = S_START;

else
state_n = state;

end

S_START :
begin

// if(full_cycle && trans_byte == 3'd0)
//��д������һ��
// state_n = SEND;
// else if(!w_r_2d && trans_byte == ID_ADDR_BYTE &&
dsu)//�������ڶ���
// state_n = SEND;

if(dsu)
state_n = SEND;

else
state_n = state;

end
SEND :
begin

if(trans_bit == 3'd7 & dsu)
state_n = S_ACK;

else
state_n = state;

end
S_ACK :
begin

if(dsu)// & sda_in)
begin

if(w_r_2d)
begin

if(trans_byte < ID_ADDR_BYTE)//д��ID+ADDR
state_n = SEND;

else if(trans_byte < trans_byte_max)//д������
state_n = SEND;

else//д���������
state_n = STOP;

end
else
begin

if(trans_byte < ID_ADDR_BYTE)//д��ID+ADDR
state_n = SEND;

else if(trans_byte ==
ID_ADDR_BYTE)//���¿�ʼ��д��ID�Ͷ��� λ

state_n = S_START;
else//����� ̬

state_n = RECEIV;
end

end

else
state_n = state;

end
RECEIV:
begin

if(trans_bit == 3'd7 & dsu)
state_n = R_ACK;

else
state_n = state;

end
R_ACK :
begin

if(dsu)
begin

if(trans_byte < trans_byte_max)
state_n = RECEIV;

else
state_n = STOP;

end
else

state_n = state;
end
STOP :
begin

if(dsu)
state_n = IDLE;

else
state_n = state;

end
default: state_n = IDLE;

endcase
end

//==//
endmodule

27.6. 实验现象

实验实现 50MHz时钟频率二分频，可观察到分频器模块输出 25MHz差分时

钟。实验现象使用示波器观察。

	27.分频器实验例程说明
	27.1.实验简介
	27.2.实验目的
	27.3.实验使用模块介绍
	27.4.模块寄存器配置过程简介
	27.4.1.使用SPI配置寄存器：
	27.4.2.使用I2C配置寄存器：
	27.4.3.模块寄存器简介

	27.5.实验代码设计
	27.6.实验现象

