30. 1.3 ~F oled 5 &7~ 325 i BH

30.1. SEIGfRIA>

SEBGAd] “/NIRIS RHE 7 AT FPGA R LA K 1.3 < oled Ji PMOD 5k,
8 HH SPI A BN S 52 1.3 <) OLED F# .

30.2. SEIGHE

7E 1.3 5} OLED JF % F s “URIIT /NREE R 7 8 ANF

30.3. SCIRfE B

SEIGAEH “/NHRAE R 7 B PMOD-OLED #ikt, OLED R~FA 1.3+, BIREL
toNBREEE, (] SPHEE I UGHETH AL E

30.4. LR

30.4.1. OLED &Yt EHH

OLED 4:#K OrganicLight-Emitting Diode, B HLA L —ME, KGR 5FA
F IR, HANTR ZH G .

OLED &t Eltn FEIfR, B EFITHERZE. Ak, B EmE. KBE.
TrAERE . BIGENE IR B AL

"

OLED A BAE AR, RIS T, il ez g K
eIz, BEEETGENRREANRCE, “EHEERICZ KRR A RN, IR
JCIR MBI RO

30.4.2. OLED B/~

Sat R A A G /BRI B A F]) PMOD-OLED B, OLED SR FEL U R

Tk .

1) 7£ OLED HEHUfS Al 75 2L W AT TR AT E, MRAE BB 8 Tt
0.96 UN-2864KSWEGO1.pdf .
FAER KT DEMO H L& 1 BERERIFT). fe->A

2) 1.3~} PMOD-OLED fER {15 5 ri 2k 64*128 MEZ &, Hh 64 1T B K SN
8 U, 81741,

3) [A] 1.3~} PMOD-OLED #HUE R ri %5 /7 5 NR TR R8s, 75 242 AT
ST (e

12818 &

A
h 4

D R

8px
8px
8px

8px

%OLED
pr_t_

S
\ 4 > t

4)

5)

FEREAT TS #RAERS, 7R EI8Id 18 ik il . AR5 b S54E 2
T hEFE4: 8’hb0 + PAGE ; (PAGE N TUHEE)
I HihEFE4: 8h00 + column([3:0] + 8'd2; (il 2 Atk kh2)

8'h10 + column([7:4] ; (column ANiEELEFIHHE)

(— s E a7k Jy 00)

MR R A A SRR, B 1, ARG RS, SA 0 WA SR E
AL B EIRWTRIRETUN 8 1T 128 FIMR R s, BCE FEAIHT 7 n WA B A
NG 2R S s SRR AL E XS RS R W T BT :
— U R HE — KSR IX 85k, LA 8bit 204 v — 4, Tl —H it v — 71,
8bit Hrdhs B ST 1 E A 1bit HE BT SRR XK N 7, Mk R # B
BATRIET, 58 —Fa S T 5, BRI A AR E A B4 R
BRI N FIRRIHTE R o

12818 K 5

< -
i Lall
reyrr—
H A H#Esbit T — _
HAMETbit v AR \‘J\‘ N
B A 56bit 8px y% L
A
Y

HAIESLbit 4
BAKbit 64 |7 |

5K H3bit gpx A
CINCETE S . 1)11y SRR S ——
B 1bit iy L)
= #3101 R B 2
Spx A
N
Spx A
. 2

30.5. SERANHE BT

SEIGARAY module HEZE 4N R BB :

oled test
A\ A\ \
time_delay display initial image send ’

BIHUERE W N RN
module 44 Va2 3

A

command_data_send ‘

oled_test iz
time_delay FER R
display_initial OLED #Jaaftdis A He B Bk

image_send BG B B

command_data_send | SPI DX &f45: fill & X A R

T EARRS 40 R s«

FE 155 OLED Bt Al /5 256 %) OLED BEidEATHe &ML &, eI 75 ZORFE — B
I S ALRES, RS ARG U076 5 A — B A J5 4 REREAT TR QL B fERCE 5E
5 AR MR R BIHRT R 3R A A7 a7 E, AT S0 A B R IR AE e
EEORHIEREIR . TERAEA SPIRIAEHRRS, WIS TR AR, Bk

WNEIES % BTt 0.96 UN-2864KSWEGO1.pdf .
module oled_test(

input sys_clk /* synthesis PAP_MARK DEBUG="true" */,//56MHz
input rst n 5
output rs IR A C /A
output reset s
output scl 5
output sda /* synthesis PAP_MARK DEBUG="true" */
)
wire cs ;

parameter time_delayl

32'd499_999 ;

parameter time_delay2 = 32'd499 999 ;

L1117 7777777777777777777777777/7777777//7/77/77/77/777/7/7/77/7/7/7/7/7/7/77/
wire clk 5 ; //5MHz

wire clk ;

wire rst n ;

reg key reg ;

reg rst_reg = 1'b0;

reg [7:0]cnt_clk ;

wire delay_end_@ /* synthesis PAP_MARK_DEBUG="true" */;

wire delay_end_1 /* synthesis PAP_MARK_DEBUG="true" */;

wire delay_start_0 /* synthesis PAP_MARK_DEBUG="true" */;

wire delay_start_1 /* synthesis PAP_MARK_DEBUG="true" */;

wire sda_start_init /* synthesis PAP_MARK_DEBUG="true" */;

wire [8:0]data_out_init /* synthesis PAP_MARK _DEBUG="true" */ ;
wire sda_end_init /* synthesis PAP_MARK_DEBUG="true" */;

wire initial_end /* synthesis PAP_MARK_DEBUG="true" */;

wire sda_end /* synthesis PAP_MARK DEBUG="true" */;
wire sda_start /* synthesis PAP_MARK_DEBUG="true" */;
wire [8:0]sda_data /* synthesis PAP_MARK_DEBUG="true" */;
wire start /* synthesis PAP_MARK DEBUG="true" */;

wire send _end /* synthesis PAP_MARK DEBUG="true" */;

wire [8:0]data_send /* synthesis PAP_MARK DEBUG="true" */;

L1777777777/7/7/7/7//7///CLK_GEN////////////////////////// 7/ /)
PLL u_pll (

.clkinl(sys_clk), // input

.lock(), // output

.clkouto(clk) // output

I

/117777 77777777777777//delay///////// /7777777777777 777//7//7777//7/77/

time_delay time_delay first(
.clk

.rst_n (rst_n

.delay start

.delay parameter (time_delayl

.delay end (delay end o

);

time_delay time_delay_ second(
.clk

.rst_n (rst_n

.delay_start (delay_start_1

.delay parameter (time_delay2

.delay_end (delay_end_1

);

(clk)

(delay start 0)

(clk)

5 //5MHz

b

5 //5MHz

b

L1111 7777 77777777777 7777 7777777777777 777/7777/77/7777777/7777///7/77/

command_data_send command_data_send(

.clk (clk)
.rst_n (rst_n)
.start (start)
.rs_ctrl (data_send[8])
.data_in (data_send[7:0])
.send_end (send_end)
.CS (cs)
.rs (rs)
.scl (scl)
.sda (sda)

)s

s
s
,//input
,//input
,//input
,//input
,//output
,//output
,//output
//output

1111177717 7777777777777777 BIaHE/ 17777777/ 7777777777/777777777/7777/7/

display initial display_initial(
.clk (clk)
.rst_n (rst_n

.delay end 0 (delay end 0) 5

.delay _end_1 (delay end_1))
.sda_end (sda_end_init) 5

.delay start @ (delay start_0) 5

.delay start_ 1 (delay start_ 1) 5
.sda_start (sda_start_init) 5
.data_out (data_out_init) ,//[8:0]
.reset (reset) 5

.initial _end (initial end)

);

1111177717 7777777777777777 BIGHEE//7//777/777777777/77777/7777/7777/7/

image _send image send(

.clk (clk)

.rst_n (rst_n)

.initial _end (initial_end) ,

.sda_end (sda_end)

.sda_start (sda_start) ,

.sda_data (sda_data) //[8:0]
)
assign start = (initial end)? sda_start : sda_start_init ;
assign sda_end = (initial end)? send end : 1'b0 ;
assign sda_end init = (initial end)? 1'b® : send end ;
assign data_send = (initial end)? sda_data : data out_init ;

endmodule

JE I R

module time_delay (

input clk ,//5MHz
input rst n ,
input delay start ,

input [31:0]delay _parameter ,
output reg delay end

)

reg [31:0]cnt_delay ;

reg delay_ flag ;

always @(posedge clk) begin
if (~rst_n)
cnt_delay <= 32'do ;
else if (cnt_delay >= delay_parameter)
cnt_delay <= 32'do ;
else if (delay_flag)
cnt_delay <= cnt_delay + 32'b1 ;
else
cnt_delay <= 32'do ;
end

always @(posedge clk) begin
if (~rst_n)
delay flag <= 1'b@ ;
else if (cnt_delay >= delay_parameter)
delay flag <= 1'b@ ;
else if (delay_start == 1'bl)
delay flag <= 1'bl ;
else
delay flag <= delay flag ;
end

always @(posedge clk) begin
if (~rst_n)
delay_end <= 1'be ;
else if (cnt_delay >= delay_parameter)
delay_end <= 1'bl ;
else
delay_end <= 1'bo ;
end
endmodule

OLED #JUa bt & R IEME TR

module display_initial (

input clk 5
input rst n 5
input delay end_o R
input delay end_1 R
input sda_end R
output reg delay start_o R
output reg delay start_1 R
output reg sda_start 5
output reg [8:0]data_out R
output reg reset 9
output reg initial end

)
reg [6:0]cnt_index /* synthesis PAP_MARK_DEBUG="true" */;
reg flag /* synthesis PAP_MARK _DEBUG="true" */;

reg [11:0]index /* synthesis PAP_MARK_DEBUG="true" */;

L1117 77//7//77//77/7/

reg [8:0] state ;

parameter IDLE = 9'booo 000 001 ;

parameter state reset = 9'bo00_000_010 ;//send

delay start o

parameter state_reset_delay = 9'booe 000 100 ;//wait delay 255ms
parameter state command = 9'boeo_001_000 ;//send

delay start 1

parameter state_command_delay = 9'booe 010 000 ;//wait delay 126ms
parameter state_index_begin = 9'b0o0 100 000 ;//send sda start
and data_out

parameter state index wait = 9'b001_000 000 ;//wait for the data
to finish sending

parameter state_index_arbi = 9'b010_000_000 ;//check whather
the index has been send

parameter state end = 9'b100_000_000 ;//send initial end

L1177 7777777777777777777777777777777777/77/77777/77//77//777//

always @(posedge clk) begin
if (~rst_n) begin
state <= IDLE ;
cnt_index <= 7'bO ;

flag <= 1'bo ;

end
else begin
case (state)
IDLE : begin
state <= state_reset N
end
state_reset : begin
state <= state_reset_delay ;
end
state_reset_delay : begin

if ((delay _end @) && (~flag))begin
state <= state_reset ;
flag <= ~flag ;

end

else if ((delay end @) && (flag))begin
state <= state_command ;
flag <= ~flag ;

end
else begin
state <= state_reset_delay ;
flag <= flag ;
end
end
state_command : begin
state <= state_index_begin ;
end
state_command_delay : begin

if ((delay end 1) && (~flag))begin
state <= state_command ;
flag <= ~flag ;

end

else if ((delay end 1) && (flag))begin
state <= state_index_begin ;
flag <= ~flag ;

end
else begin
state <= state_command_delay ;
flag <= flag ;
end
end
state_index_begin : begin

state <= state_index wait ;
end

state_index_wait : begin
if (sda_end)
state <= state_index_arbi ;
else
state <= state_index wait ;
end
state_index_arbi : begin
if (cnt_index >= 7'd24) begin
state <= state_end ;
cnt_index <= 7'de ;
end
else if (cnt_index <= 7'd1l) begin
state <= state_command_delay ;
cnt_index <= cnt_index + 7'dl ;

end
else begin
state <= state_index_begin ;
cnt_index <= cnt_index + 7'dl
end
end
state_end : begin
state <= state_end ;
end

default: begin state <= IDLE ;
cnt_index <= 7'b0O ;
flag <= flag ;
end
endcase
end
end

LI11177777777777777777777777777777/7777777/7777/7777777777/77

always @(posedge clk) begin

if (~rst_n)
delay start_© <= 1'b0 ;
else if (state == state_reset)
delay start @ <= 1'b1l ;
else

delay start _© <= 1'bO ;
end

always @(posedge clk) begin
if (~rst_n)

delay start_1 <= 1'b0O ;
else if ((state == state_index_arbi)&&(cnt_index <= 7'dl))
delay start_1 <= 1'b1 ;
else
delay start_1 <= 1'b0O ;
end

LI1177777777 7777777777777 77777777777777777777777777777/7777777//77/777/

always @(posedge clk) begin

if (~rst_n)
reset <= 1'b0 ;
else if (state == state_reset)

reset <= flag ;
else
reset <= reset ;
end

LI11177777 7777777777777 777 /7777777777777 7777777777/777/7777777/77/777/

always @(posedge clk) begin
if (~rst_n)
sda_start <= 1'bO ;
else if (state == state_index_begin)
sda_start <= 1'b1 ;
else
sda_start <= 1'bO ;
end

always @(posedge clk) begin
if (~rst_n)
data_out <= 9'do ;
else if (state == state_index_begin)
data_out <= index[8:0];
else
data_out <= data_out ;
end

[1117777777777777777777777777777777/7/777777/7/7/7777/7/7/7/777/77/7/7/
always @(posedge clk) begin
if (~rst_n)
initial_end <= 1'bO ;
else if (state == state_end)
initial_end <= 1'bl ;

else
initial_end <= 1'bO ;
end

LI11177777 77777777777 7777777777777/77777777777/777/77777777777/7//7777/

always @(*) begin
case (cnt_index)

(%] :index <= 12'h@_AE ;
1 :index <= 12'he_DS5 ;
2 :index <= 12'he_80 ;
3 :index <= 12'h0_A8 ;
4 :index <= 12'h@_3F ;
5 :index <= 12'h@_D3 ;
6 :index <= 12'h0_00 ;
7 :index <= 12'he_40 ;
8 :index <= 12'h0_8D ;
9 :index <= 12'h0_14 ;
10 :index <= 12'he_20 ;
11 :index <= 12'h0_02 ;
12 :index <= 12'h0_A1 ;
13 :index <= 12'he_C8 ;
14 :index <= 12'ho DA ;
15 :index <= 12'h0_12 ;
16 :index <= 12'he_81 ;
17 :index <= 12'h@_66 ;
18 :index <= 12'h@_D9 ;
19 :index <= 12'h0_F1 ;
20 :index <= 12'ho DB ;
21 :index <= 12'he_30 ;
22 :index <= 12'h0_A4 ;
23 :index <= 12'h@_A6 ;

24 :index <= 12'hO_AF ;
default: index <= 12'h@_af ;
endcase
end

endmodule

SPI HI(Hf i AR

module command_data_send (

input clk 5
input rst n R
input start R
input rs_ctrl R
input [7:0] data_in 5
output send_end 5
output cs 9
output rs 9
output scl R
output sda

bE

reg [7:0]sda_data /* synthesis PAP_MARK _DEBUG="true" */;
reg rs_reg /* synthesis PAP_MARK_DEBUG="true" */;

reg [3:0]cnt /* synthesis PAP_MARK_DEBUG="true" */;

reg [4:@]state /* synthesis PAP_MARK_DEBUG="true" */;
wire sda_data_in /* synthesis PAP_MARK_DEBUG="true" */;
wire sda_data_out /* synthesis PAP_MARK_DEBUG="true" */;

parameter IDLE = 5'booool ;
parameter CS_LOW = 5'b00010 ;
parameter SDA _SEND = 5'b00100 ;
parameter CS_HIGH = 5'b01000 ;

parameter END_STATE = 5'bl0000 ;

L1111177777777777777777777 7 #TTEAR/ 177777777 7777/7777/7777/

always @(posedge clk) begin
if (~rst_n)
sda_data <= 8'do ;
else if (start)
sda_data <= data_in[7:0] ;
else
sda_data <= sda_data ;
end

always @(posedge clk) begin
if (~rst_n)
rs_reg <= 1'bl ;
else if (start)
rs_reg <= rs_ctrl ;
else

rs_reg <= rs_reg ;
end

1111177717 7771777777777777 KEBL 17777777777 7777777777777777777/

always @(posedge clk) begin
if (~rst_n) begin
state <= IDLE ;
cnt <= 4'do ;

end
else begin
case (state)
IDLE :begin
if (start)
state <= CS_LOW g
else
state <= IDLE 5
end
CS_LOW :begin
state <= SDA_SEND ;
end
SDA_SEND:begin
if (cnt >= 4'd7) begin
state <= CS_HIGH g
cnt <= 4'do ;
end
else begin
state <= SDA_SEND ;
cnt <= cnt + 1'b1
end
end
CS_HIGH :begin
state <= END_STATE ;
end
END_STATE:begin
state <= IDLE 5
end
default:begin
state <= IDLE 5
cnt <= 4'de 5
end
endcase
end

end

/1111177777777 77777 77 %ttt It/ /71777777777 ///777777777///7/777777777777
assign rs = rs_reg ;

assign cs = ((state == CS_LOW) || (state == SDA_SEND) || (state == CS_HIGH))?
1'b0 : 1'b1 ;

assign scl = (state == SDA SEND)? ~clk : 1'bl ;
assign sda_data out = (state == SDA SEND)? sda_data[7-cnt] : 1'b1l ;

assign sda = (state == SDA SEND)? sda_data out : 1'be ;
assign sda_data_in = sda ;

assign send_end = (state == END_STATE)? 1'bl : 1'be ;
endmodule

FIREE RO PR

module image_send (

input clk 5
input rst n R
input initial end ,
input sda_end R
output sda_start 5
output [8:0] sda_data

bE

reg [9:0]addr /* synthesis PAP_MARK DEBUG="true" */;

reg [1:0]cnt /* synthesis PAP_MARK DEBUG="true" */; //
@:column 1:page 2:data

reg [7:0]cnt_c /* synthesis PAP_MARK DEBUG="true" */;
reg [2:0]cnt_p /* synthesis PAP_MARK DEBUG="true" */;
reg [8:0]data_sig /* synthesis PAP_MARK DEBUG="true" */;
reg start_reg /* synthesis PAP_MARK DEBUG="true" */;

reg data_start /* synthesis PAP_MARK_DEBUG="true" */;
wire [7:0]rd_data /* synthesis PAP_MARK DEBUG="true" */;
wire [7:0]order[0:2]/* synthesis PAP_MARK DEBUG="true" */;
//assign order[0] = 8'h22 ;

//assign order[1] = 8'hbO + cnt _p;

//assign order[2] = 8'h07 ;

assign order[9] 8'hbo + cnt_p;

assign order[1] = 8'h10 + ((cnt_c + 8'd2)>>4) ;

assign order[2] = 8'h@@ + ((cnt_c + 8'd2)&8'hef);

reg [6:0]state /* synthesis PAP_MARK DEBUG="true" */;

parameter idle = 7'bo_000 001;
parameter state_command = 7'b0_000_010; //send instruction
7'bo_000_100; //wait for sending to

parameter state_command_wait
complete

7'b0_001_000; //send addr
parameter state_send wait 7'bo_010 000;
parameter state wait = 7'b0_100_000; //send data
parameter state_end = 7'bl_000 000;

parameter state_send

LI11177777 77777777777 7777 7777777777777 77777777/77/7777777/77777/777/77/

always @(posedge clk) begin
if (~rst_n)
state <= idle ;
else begin

case (state)
idle :begin
if (initial_end)
state <= state command ;
else
state <= idle ;
end
state_command :begin
state <= state_command wait ;
end
state_command_wait :begin
if ((cnt >= 2'd3)&&(sda_end))
state <= state_send ;
else if (sda_end)
state <= state_command ;
else
state <= state_command wait ;
end
state_send :begin
state <= state_send wait ;
end
state_send wait :begin
if ((cnt_c >= 8'd128)&&(sda_end))
state <= state_wait ;
else if (sda_end)
state <= state_send ;
else
state <= state_send wait ;
end
state_wait :begin
if (cnt_p >= 3'd7)
state <= state_end ;
else
state <= state_command ;
end
state_end : begin
state <= state_end ;
end
default:state <= idle ;
endcase
end
end

LI1177777 777777777777 777 777777777 77777777/7777777/7777777/777/777/7/777/

always @(posedge clk) begin
if (~rst_n) begin
cnt_p <= 3'de ;
cnt_c <= 8'de ;

end

else if (state == state_send)begin
cnt_p <= cnt_p ;
cnt_c <= cnt_c + 8'dl ;

end

else if (state == state_wait)begin
cnt_p <= cnt_p + 3'dl ;
cnt_c <= 8'de ;

end

else if (state == state_end)begin
cnt_p <= 3'de ;
cnt_c <= 8'de ;
end
end
L1117 7777777777777777777777777777/77777/7777/777/7/7/7777/7/7/7/7/77/77/7/
always @(posedge clk) begin
if (~rst_n)
cnt <= 2'do ;
else if (state ==state_command)
cnt <= cnt + 2'dl ;
else if (state == state_send)
cnt <= 2'do ;
end
L1117 7777777777777777777777777777777777/7777/777/7/7/7777/7/7/7//77/7/7/
always @(posedge clk) begin
if (~rst_n)
data_sig <= 9'do ;
else if (state == state_command)
data_sig <= {1'b@ ,order[cnt] };
else if (state == state_send)
data_sig <= {1'bl ,rd_data};
else
data_sig <= data_sig ;
end

always @(posedge clk) begin

if (~rst_n)
start_reg <= 1'b0 ;
else if ((state == state command)||(state == state send))

start_reg <= 1'b1 ;

else
start_reg <= 1'b0 ;
end

assign sda_data = data_sig ;
assign sda_start = start_reg ;

always @(posedge clk) begin

if (~rst_n)
addr <= 10'doe ;
else if (state == state_send)

addr <= addr + 10'd1l ;
else if (state == state_end)
addr <= 10'doe ;
end

rom_image rom_image display (

.addr(addr), // input [9:0]
.clk(clk), // input
.rst(~rst_n), // input

.rd_data(rd_data) // output [7:0]
)

endmodule

30.6. LRI E

OLED B B Ros “TRIITH/NRISBHEL” B .

	30.1.3寸oled屏显示实验说明
	30.1.实验简介
	30.2.实验目的
	30.3.实验使用模块介绍
	30.4.实验原理
	30.4.1.OLED发光原理
	30.4.2.OLED显示原理

	30.5.实验代码设计
	30.6.实验现象

