
33. 矩阵按键位置显示实验说明

33.1. 实验简介

实验室用“小眼睛科技”开发板、矩阵按键模块完成矩阵按键位置使用数码

管显示实验。

33.2. 实验要求

矩阵按键共四行 H0~H3 四列 L0~L3,按键按下第 0 行第 1 列时，数码管显示

01、按键按下第 3 行第 2列时，数码管显示 32。

33.3. 实验使用模块介绍

实验使用“小眼睛科技”矩阵按键扩展模块，其中矩阵按键为四行四列矩阵

按键。

33.4. 实验原理

矩阵按键是一种排布类似矩阵的按键组，再使用时比简单的按键要复杂一些，

一般矩阵按键的行线或者列线需要上拉接电源，使 IO 默认保持高电平，通过扫

描列线或者行线的方式，取判断按键是否按下，以及按键按键的位置。

矩阵扫描过程：



1、将列信号上拉，使列信号 IO 默认高电平状态，将列信号输入至 FPGA 中。

具体设置为在使用 UCE 绑定管脚时，在输入矩阵按键列信号位置将 BUS_KEEPER

选项设置为 PULLUP。

2、FPGA 输出行信号，使行信号默认保持低电平。

3、在按键未按下时，矩阵按键列信号为高电平，当按键按下时，此处按键

的列信号与行信号相连，此时矩阵按键列信号将被拉低。

4、检测到矩阵按键的列信号被拉低，通过拉低列信号的位可以确定按键的

列数。



5、使用行信号逐行扫描，具体操作为将行信号依次拉高，在行信号拉高期

间，FPGA接收到的列信号被拉高，则可以确定按键的行数。

6、确定按键的位置后，将行信号保持低电平，按键按下期间，列信号将持

续拉低。将拉低的列信号进行消抖后可作为按键信号使用。



33.5. 实验源码设计

顶层设计：

1、key_det模块用于确定按键信号的行列数，并将消抖后的按键信号输出。

2、seq_dis 模块用于显示按键信号的行列数。

`timescale 1ns / 1ps
`define UD #1

module top_matrix_key(
input clk ,
input rst_n ,
input key ,
input wire [3:0]key_c ,
output wire [3:0]key_r ,
output wire [3:0]dig ,
output wire [7:0]smg ,
output led
);

wire [3:0]key_location ;

key_det #(
.btn_delay (20'hf423f)

)key_det(
.clk (clk ) ,

.rst_n (rst_n ) ,

.key_c (key_c ) ,

.key_r (key_r ) ,

.key_location (key_location ) ,

.key_flag (btn_flag )

);

seq_dis seq_dis(
.clk (clk ),



.key_location (key_location),

.dig (dig ),

.smg (smg )

);

assign led = ~btn_flag ;

endmodule

矩阵按键检测模块：将行信号输出为低电平，当检测到列信号不全为高电平时，

说明由按键按下，并可以判断列信号的位置，然后一次拉高行信号，通过判断行

信号拉高器件，对应被拉低的列信号是否被拉高，可以判断行信号的位置。

`timescale 1ns / 1ps
`define UD #1

module key_det #(
parameter btn_delay = 20'hf423f

)(
input wire clk ,
input wire rst_n ,
input wire [3:0]key_c /*synthesis

PAP_MARK_DEBUG="1"*/, //The signal is high by default
output reg [3:0]key_r /*synthesis PAP_MARK_DEBUG="1"*/,
output wire [3:0]key_location /*synthesis

PAP_MARK_DEBUG="1"*/,
output wire key_flag /*synthesis PAP_MARK_DEBUG="1"*/

);

reg [3:0]key_creg1 ;
reg [3:0]key_creg2 ;
reg [1:0]cnt_check ;
reg [1:0]col_value /*synthesis PAP_MARK_DEBUG="1"*/;
reg [1:0]row_value /*synthesis PAP_MARK_DEBUG="1"*/;
reg [19:0]cnt_delay ;
reg flag ;

/*--------The input signal eliminates metastability---------*/

always @(posedge clk ) begin
if (~rst_n) begin

key_creg1 <= 4'hf ;



key_creg2 <= 4'hf ;
end
else begin

key_creg1 <= key_c ;
key_creg2 <= key_creg1 ;

end
end

/*-----------------------state machine----------------------*/
reg [7:0]state /*synthesis PAP_MARK_DEBUG="1"*/;

parameter idle = 8'b0000_0001 ;
parameter col_det = 8'b0000_0010 ;
parameter row_wait = 8'b0000_0100 ;
parameter row_det = 8'b0000_1000 ;
parameter key_eli_1 = 8'b0001_0000 ;
parameter key_end = 8'b0010_0000 ;
parameter key_eli_2 = 8'b0100_0000 ;
parameter state_end = 8'b1000_0000 ;

always @(posedge clk ) begin
if (~rst_n)

state <= idle;
else begin

case (state)
idle :begin

if (key_creg2 != 4'hf)
state <= col_det ;

else
state <= idle ;

end
col_det:begin

if ((cnt_check == 2'd3)&&(flag == 1'b1 ))
state <= row_wait ;

else
state <= col_det ;

end
row_wait:begin

state <= row_det ;
end
row_det :begin

if ((cnt_check == 2'd3)&&(flag == 1'b1 ))
state <= key_eli_1;

else



state <= row_det ;
end
key_eli_1 :begin

if (cnt_delay == btn_delay)
state <= key_end ;

else
state <= key_eli_1 ;

end
key_end :begin

if ((key_creg2[col_value] ==
1'b0)&&(key_creg1[col_value] == 1'b1))

state <= key_eli_2 ;
else

state <= key_end ;
end
key_eli_2 :begin

if (cnt_delay == btn_delay)
state <= state_end ;

else
state <= key_eli_2 ;

end
state_end :begin

state <= idle ;
end
default :state <= idle ;

endcase
end

end

/*----------Set counter to detect column by column-----------*/

always @(posedge clk ) begin
if (~rst_n)

flag <= 1'b0 ;
else if ((state == col_det)||(state == row_det))

flag <= ~flag ;
else

flag <= 1'b0 ;
end

always @(posedge clk ) begin
if (~rst_n)

cnt_check <= 2'd0 ;
else if (((state == col_det)||(state == row_det))&&(flag == 1'b1))



cnt_check <= cnt_check + 2'd1 ;
else if ((state == col_det)||(state == row_det))

cnt_check <= cnt_check ;
else

cnt_check <= 2'd0 ;
end

/*----------------Detects key column position---------------*/

always @(posedge clk ) begin
if (~rst_n)

col_value <= 2'd0 ;
else if ((state == col_det)&&(key_c[cnt_check]== 1'b0)&&(flag ==

1'b1 ))
col_value <= cnt_check ;

else
col_value <= col_value ;

end

/*---------------Detects key row position--------------------*/

always @(posedge clk ) begin
if (~rst_n)

row_value <= 2'd0 ;
else if ((state == row_det)&&(key_c == 4'hf)&&(flag == 1'b1 ))

row_value <= cnt_check ;
else

row_value <= row_value ;
end

/*---------------ROW signal assignment----------------------*/

always @(*) begin
key_r <= 4'b0000 ;

if (state == row_det) begin
case (cnt_check)

2'd0 : key_r <= 4'b0001 ;
2'd1 : key_r <= 4'b0010 ;
2'd2 : key_r <= 4'b0100 ;
2'd3 : key_r <= 4'b1000 ;
default : key_r <= 4'b0000 ;

endcase
end
else



key_r <= 4'b0000 ;
end

/*----------------key-vibration eliminate------------------*/

always @(posedge clk ) begin
if (~rst_n)

cnt_delay <= 20'd0 ;
else if ((state == key_eli_1)||(state == key_eli_2))

cnt_delay <= cnt_delay + 20'd1 ;
else

cnt_delay <= 20'd0 ;
end

/*-------------------------------*/

assign key_flag = (state == key_end)? key_creg2[col_value] : 1'b1 ;

assign key_location = {row_value , col_value} ;

endmodule

数码管显示模块不再赘述，完整代码请参考源码文件。

33.6. 实验现象

按下矩阵按键按下第 0 行第 1 列时，数码管显示 01、按键按下第 3 行第 2

列时，数码管显示 32。


	33.矩阵按键位置显示实验说明
	33.1.实验简介
	33.2.实验要求
	33.3.实验使用模块介绍
	33.4.实验原理
	33.5.实验源码设计
	33.6.实验现象


