
微信公众号：小眼睛 FPGA www.meyesemi.com

1 / 22

6.串口收发实验例程

6.1 PGX-Nano 开发板简介

PGX-Nano 开发板集成了一路 USB 转串口模块，采用的 USB-UART 芯片 CP2102 , USB 接口

采用 USB Type C 接口，可以用一根 USB Type C 线连接到 PC 的 USB 口进行串口数据通信（详

情请查看“PGX-Nano 开发板硬件使用手册”）。

6.2 实验要求

串口通信时波特率设置为 115200bps，数据格式为 1 位起始位、8 位数据位、无校验位、

1 位结束位。板子 每隔 1s 向串口助手发送一次 ASCII 码的“www.meyesemi.com” ，通过串

口助手向板子以十六进制形式发送数字（00~FF），开发板 LED 以二进制显示亮起。

6.3 实验原理

6.3.1 串口原理

从下图我们可以看到标准串口接口是 9根线，具体含义如下：

数据线：

TXD（pin 3）：串口数据输出(Transmit Data)

RXD（pin 2）：串口数据输入(Receive Data)

握手：

RTS（pin 7）：发送数据请求(Request to Send)

CTS（pin 8）：清除发送(Clear to Send)

DSR（pin 6）：数据发送就绪(Data Send Ready)

DCD（pin 1）：数据载波检测(Data Carrier Detect)

。
板子每隔1s 向串口助手发送一次ASCII码

微信公众号：小眼睛 FPGA www.meyesemi.com

2 / 22

DTR（pin 4）：数据终端就绪(Data Terminal Ready)

地线：

GND（pin 5）：地线

其它：

RI（pin 9）：铃声指示

通常我们用 RS232 串口仅用到了 9 根传输线中的三根：TXD，RXD，GND。但是对于数据传

输，双方必须对数据传输采用使用相同的波特率，约定同样的传输模式（传输架构，握手条件

等）。尽管这种方法对于大多数应用已经足够，但是对于接收方过载的情况这种使用受到限制。

RS232 的串口连接方式：

串口传输协议如下：

起始位：先发出一个逻辑”0”信号，表示传输字符的开始。

数据位：可以是 5~8 位逻辑”0”或”1”。如 ASCII 码（7位），扩展 BCD 码（8位）。

校验位：数据位加上这一位后，使得“1”的位数应为偶数(偶校验)或奇数(奇校验)。

停止位：它是一个字符数据的结束标志。可以是 1位、1.5 位、2位的高电平。

空闲位：处于逻辑“1”状态，表示当前线路上没有资料传送。

波特率：uart 中的波特率就可以认为是比特率，即每秒传输的位数(bit)。一般选波特率

都会有 9600,19200,115200 等选项。其实意思就是每秒传输这么多个比特位数(bit)。

引入波特率的概念后可得到串口的传输节奏如下：

微信公众号：小眼睛 FPGA www.meyesemi.com

3 / 22

6.3.2 串口传输步骤

6.3.2.1 串口发送流程

6.3.2.2 串口接收流程

6.3.3 串口发送字符

从前面串口协议中可以了解到串口每次传输可以以有 5～8bit 数据，在计算机中字符通常

用 ASCII 码（7bit）表示，所以字符的发送可以用 ASCII 码发送。

查询 ASCII 码表格可得到：“www.meyesemi.com”用到的字符对应 ASCII 码；

微信公众号：小眼睛 FPGA www.meyesemi.com

4 / 22

6.4 实验源码设计

从实验目的分析可将实验做如下划分：

TOP

TX BAUD RX

从原理上分析波特率的计算是一个计数器，发射和接收可复用，我们在设计时为保持 TX，

或 RX 的完整性，故将波特周期计数器集成在各自模块内部；

上述分析仅仅搭建好 PGX-Nano 的与 PC 通信的桥梁 UART，传输的数据没有体现。故而需

要增加发送数据模块，与接收数据模块；

uart

CLK

LED[7:0]rx

Uart_data_gen Uart_tx

Uart_rx

tx

6.4.1 串口发射模块设计

目标：接收到一个发送命令信号时，将 data[7:0] -> 依次发出{start,data[0:7],stop}

共 10bit 数据（无校验位，停止位 1bit）；

有两种方法可以将一个并行数据串行化；

方法一：通过 bit 计数与 baud 计数控制移位输出；

微信公众号：小眼睛 FPGA www.meyesemi.com

5 / 22

1 // transmit bit
2 always@(posedge clk)
3 begin
4 if(!rstn)
5 txd <= `UD 1'b1;
6 else
7 begin
8 if(trans_en)
9 Begin
10 // 将开始标志和停止标志以及传输数据集成放到 trans_data中可用下方语句

11 // txd <= `UD trans_data[trans_bit];
12 // 单 bit 控制用下方语句

13 case(trans_bit)
14 4'h0 :txd <= `UD 1'b0;
15 4'h1 :txd <= `UD tx_data_reg[0];
16 4'h2 :txd <= `UD tx_data_reg[1];
17 4'h3 :txd <= `UD tx_data_reg[2];
18 4'h4 :txd <= `UD tx_data_reg[3];
19 4'h5 :txd <= `UD tx_data_reg[4];
20 4'h6 :txd <= `UD tx_data_reg[5];
21 4'h7 :txd <= `UD tx_data_reg[6];
22 4'h8 :txd <= `UD tx_data_reg[7];
23 4'h9 :txd <= `UD 1'b1;
24 default :txd <= `UD 1'b1;
25 endcase
26 end
27 else
28 txd <= `UD 1'b1;
29 end
30 end
31

方法二：通过 bit 计数与 baud 计数控制状态跳转，在状态机中输出；

微信公众号：小眼睛 FPGA www.meyesemi.com

6 / 22

1 // logical ouput 状态机输出

2 always @ (posedge clk)
3 begin
4 if(tx_en)
5 begin
6 case(tx_state)
7 IDLE : uart_tx <= `UD 1'h1; //空闲状态输出高电平

8 SEND_START : uart_tx <= `UD 1'h0; //start 状态发送一个波特周期的低电平

9 SEND_DATA : //发送状态每个波特周期发送一个 bit；

10 begin
11 case(tx_bit_cnt)
12 3'h0 : uart_tx <= `UD trans_data[0];
13 3'h1 : uart_tx <= `UD trans_data[1];
14 3'h2 : uart_tx <= `UD trans_data[2];
15 3'h3 : uart_tx <= `UD trans_data[3];
16 3'h4 : uart_tx <= `UD trans_data[4];
17 3'h5 : uart_tx <= `UD trans_data[5];
18 3'h6 : uart_tx <= `UD trans_data[6];
19 3'h7 : uart_tx <= `UD trans_data[7];
20 default: uart_tx <= `UD 1'h1;
21 endcase
22 end
23 SEND_STOP : uart_tx <= `UD 1'h1; //发送停止状态 输出 1个波特周期高电平

24 default : uart_tx <= `UD 1'h1; // 其他状态默认与空闲状态一致，保持高电平输出

25 endcase
26 end
27 else
28 uart_tx <= `UD 1'h1;
29 end
30

方法一的 module 如下：

1 `timescale 1ns / 1ps
2 `define UD #1
3 module uart_tx #(
4 parameter BAUND_RATE_CNT = 12'd1250
5 //115200 : 12MHz, 12000000/115200 = 10'd104
6 //9600 : 12000000/9600 = 11'd1250
7)
8 (
9 input clk,
10 input rstn,
11 input trig, // active posedge
12
13 input [7:0] tx_data,
14
15 output reg txd,
16 output tx_busy
17);
18

微信公众号：小眼睛 FPGA www.meyesemi.com

7 / 22

19 //===
20 // baund rate set
21 reg [11:0] baund_cnt;
22 always @(posedge clk)
23 begin
24 if(!rstn)
25 baund_cnt <= `UD 12'd0;
26 else
27 begin
28 if(baund_cnt == BAUND_RATE_CNT - 1'b1)
29 baund_cnt <= `UD 12'd0;
30 else
31 baund_cnt <= `UD baund_cnt + 12'd1;
32 end
33 end
34
35 wire baund_over = (baund_cnt == BAUND_RATE_CNT - 1'b1) ? 1'b1 : 1'b0;
36
37 //===
38 //transmit start
39 reg trig_1d;
40 reg [7:0] tx_data_reg;
41 always @(posedge clk)
42 begin
43 trig_1d <= `UD trig;
44 end
45
46 reg start_en;
47 wire start;
48 always @(posedge clk)
49 begin
50 if(!rstn)
51 start_en <= `UD 1'b0;
52 else if(~trig_1d & trig & ~start_en)
53 start_en <= `UD 1'b1;
54 else if(baund_over)
55 start_en <= `UD 1'b0;
56 end
57 assign start = ~trig_1d & trig;//start_en & baund_over;
58
59 //将 data 在触发发送时进行锁存

60 always @(posedge clk)
61 begin
62 if(!rstn)
63 tx_data_reg <= `UD 8'h3f;
64 else if(~trig_1d & trig)
65 tx_data_reg <= `UD tx_data;
66 end
67

微信公众号：小眼睛 FPGA www.meyesemi.com

8 / 22

68 //===
69 // trasmit data 将 start stop data锁存在一个锁存器中。

70 reg [9:0] trans_data;
71
72 always @(posedge clk)
73 begin
74 if(!rstn)
75 trans_data <= `UD 10'h3f;
76 else if(~trig_1d & trig)
77 trans_data <= `UD {1'b1,tx_data,1'b0};
78 end
79
80 //===
81 // transmit control
82 reg trans_en;
83 reg [3:0] trans_bit;
84 always @(posedge clk)
85 begin
86 if(!rstn)
87 trans_en <= `UD 1'b0;
88 else if(~trig_1d & trig)
89 trans_en <= `UD 1'b1;
90 else if(trans_bit == 4'd9 && baund_over)
91 trans_en <= `UD 1'b0;
92 else
93 trans_en <= `UD trans_en;
94 end
95
96 assign tx_busy = ~trans_en;
97
98 always @(posedge clk)
99 begin
100 if(!rstn)
101 trans_bit <= `UD 4'd0;
102 else
103 begin
104 if(trans_en && baund_over)
105 begin
106 if(trans_bit == 4'd9)
107 trans_bit <= `UD 4'd0;
108 else
109 trans_bit <= `UD trans_bit + 4'd1;
110 end
111 else if(!trans_en)
112 trans_bit <= `UD 4'd0;
113 end
114 end
115

微信公众号：小眼睛 FPGA www.meyesemi.com

9 / 22

116 //===
117 // transmit bit
118 always@(posedge clk)
119 begin
120 if(!rstn)
121 txd <= `UD 1'b1;
122 else
123 begin
124 if(trans_en)
125 begin
126 // 将开始标志和停止标志以及传输数据集成放到 trans_data中可用下方语句

127 // txd <= `UD trans_data[trans_bit];
128 // 单 bit 控制用下方语句

129 case(trans_bit)
130 4'h0 :txd <= `UD 1'b0;
131 4'h1 :txd <= `UD tx_data_reg[0];
132 4'h2 :txd <= `UD tx_data_reg[1];
133 4'h3 :txd <= `UD tx_data_reg[2];
134 4'h4 :txd <= `UD tx_data_reg[3];
135 4'h5 :txd <= `UD tx_data_reg[4];
136 4'h6 :txd <= `UD tx_data_reg[5];
137 4'h7 :txd <= `UD tx_data_reg[6];
138 4'h8 :txd <= `UD tx_data_reg[7];
139 4'h9 :txd <= `UD 1'b1;
140 default :txd <= `UD 1'b1;
141 endcase
142 end
143 else
144 txd <= `UD 1'b1;
145 end
146 end
147
148 endmodule
149

方法二的 module 设计如下：

1 `timescale 1ns / 1ps
2 `define UD #1
3 module uart_tx #(
4 parameter BPS_NUM = 16'd434
5 // 设置波特率为 4800时，bit 位宽时钟周期个数:50MHz set 10417 40MHz set 8333

6 // 设置波特率为 9600时，bit 位宽时钟周期个数:50MHz set 5208 40MHz set 4167

7 // 设置波特率为 115200 时，bit位宽时钟周期个数:50MHz set 434 40MHz set 347 12M set 104

8)
9 (
10 input clk, // clock 时钟信号

11 input [7:0] tx_data, // uart tx data signal byte； 等待发送的字节数据

12 input tx_pluse, // uart tx enable signal,rising is active; 发送模块发送触发信号

13
14 output reg uart_tx, // uart tx transmit data line 发送模块串口发送信号线

15 output tx_busy // uart tx module work states,high is busy;发送模块忙状态指示

16);
17

微信公众号：小眼睛 FPGA www.meyesemi.com

10 / 22

18 //==
19 //wire and reg in the module
20 //==
21 reg tx_pluse_reg =0;
22 reg [7:0] trans_data=0;
23
24 reg [2:0] tx_bit_cnt=0; //the bits number has transmited.
25
26 reg [2:0] tx_state=0; //current state of tx state machine.
27 reg [2:0] tx_state_n=0; //next state of tx state machine.
28
29 reg [3:0] pluse_delay_cnt=0;
30 reg tx_en = 0;
31
32 // uart tx state machine's state
33 localparam IDLE = 4'h0; //tx state machine's state.空闲状态

34 localparam SEND_START = 4'h1; //tx state machine's state.发送 start状态

35 localparam SEND_DATA = 4'h2; //tx state machine's state.发送数据状态

36 localparam SEND_STOP = 4'h3; //tx state machine's state.发送 stop状态

37 localparam SEND_END = 4'h4; //tx state machine's state.发送结束状态

38
39 // uart bps set the clk's frequency is 50MHz
40 reg [15:0] clk_div_cnt=0; //count for division the clock.
41
42 //==
43 //logic
44 //==
45 assign tx_busy = (tx_state != IDLE);
46 //some control single.
47
48 always @(posedge clk)
49 begin
50 tx_pluse_reg <= `UD tx_pluse;
51 end
52
53 // uart 锁存待发射数据

54
55 always @(posedge clk)
56 begin
57 if(~tx_pluse_reg & tx_pluse)
58 trans_data <= `UD tx_data;
59 end
60
61 // uart 模块发送工作使能标志信号

62 always @(posedge clk)
63 begin
64 if(~tx_pluse_reg & tx_pluse)
65 tx_en <= `UD 1'b1;
66 else if(tx_state == SEND_END)
67 tx_en <= `UD 1'b0;
68 end
69

微信公众号：小眼睛 FPGA www.meyesemi.com

11 / 22

70 //division the clock to satisfy baud rate.波特周期计数器

71 always @ (posedge clk)
72 begin
73 if(clk_div_cnt == BPS_NUM || (~tx_pluse_reg & tx_pluse))
74 clk_div_cnt <= `UD 16'h0;
75 else
76 clk_div_cnt <= `UD clk_div_cnt + 16'h1;
77 end
78
79 //count the number has transmited.发送数据状态中，发送 bit位计数，以波特周期累加

80 always @ (posedge clk)
81 begin
82 if(!tx_en)
83 tx_bit_cnt <= `UD 3'h0;
84 else if((tx_bit_cnt == 3'h7) && (clk_div_cnt == BPS_NUM))
85 tx_bit_cnt <= `UD 3'h0;
86 else if((tx_state == SEND_DATA) && (clk_div_cnt == BPS_NUM))
87 tx_bit_cnt <= `UD tx_bit_cnt + 3'h1;
88 else
89 tx_bit_cnt <= `UD tx_bit_cnt;
90 end
91
92 //==
93 //transmitter state machine
94 //==
95 // state change 状态跳转

96 always @(posedge clk)
97 begin
98 tx_state <= tx_state_n;
99 end
100
101 // state change condition 状态跳转条件及规律

102 always @ (*)
103 begin
104 case(tx_state)
105 IDLE :
106 begin
107 if(~tx_pluse_reg & tx_pluse) //触发发送做 16个 clock延时后跳到发送 start状态

108 tx_state_n = SEND_START;
109 else
110 tx_state_n = tx_state;
111 end
112 SEND_START :
113 begin
114 if(clk_div_cnt == BPS_NUM) //发送一个波特周期的低电平后进入，发送数据状态

115 tx_state_n = SEND_DATA;
116 else
117 tx_state_n = tx_state;
118 end

微信公众号：小眼睛 FPGA www.meyesemi.com

12 / 22

119 SEND_DATA :
120 begin
121 if(tx_bit_cnt == 3'h7 && clk_div_cnt == BPS_NUM)
122 //计时 8个波特周期后（发送了 8bit数据），跳转到发送 stop 状态

123 tx_state_n = SEND_STOP;
124 else
125 tx_state_n = tx_state;
126 end
127 SEND_STOP :
128 begin
129 if(clk_div_cnt == BPS_NUM)
130 //设置停止位宽为 1个波特周期，计数发送一个波特周期的高电平，之后跳转到发送结束状态

131 tx_state_n = SEND_END;
132 else
133 tx_state_n = tx_state;
134 end
135 SEND_END : tx_state_n = IDLE;
136 default : tx_state_n = IDLE;
137 endcase
138 end
139
140 // logical ouput 状态机输出

141 always @ (posedge clk)
142 begin
143 if(tx_en)
144 begin
145 case(tx_state)
146 IDLE : uart_tx <= `UD 1'h1; //空闲状态输出高电平

147 SEND_START : uart_tx <= `UD 1'h0; //start状态发送一个波特周期的低电平

148 SEND_DATA : //发送状态每个波特周期发送一个 bit；

149 begin
150 case(tx_bit_cnt)
151 3'h0 : uart_tx <= `UD trans_data[0];
152 3'h1 : uart_tx <= `UD trans_data[1];
153 3'h2 : uart_tx <= `UD trans_data[2];
154 3'h3 : uart_tx <= `UD trans_data[3];
155 3'h4 : uart_tx <= `UD trans_data[4];
156 3'h5 : uart_tx <= `UD trans_data[5];
157 3'h6 : uart_tx <= `UD trans_data[6];
158 3'h7 : uart_tx <= `UD trans_data[7];
159 default: uart_tx <= `UD 1'h1;
160 endcase
161 end
162 SEND_STOP : uart_tx <= `UD 1'h1; //发送停止状态 输出 1个波特周期高电平

163 default : uart_tx <= `UD 1'h1;
164 // 其他状态默认与空闲状态一致，保持高电平输出

165 endcase
166 end
167 else
168 uart_tx <= `UD 1'h1;
169 end
170
171 endmodule
172

微信公众号：小眼睛 FPGA www.meyesemi.com

13 / 22

6.4.2 串口接收模块设计

串口接收模块是发射模块的逆过程，设计思路区别不大，但是有如下几点需要注意：

1.接收开始信号，当 rx 下降沿到来后保持几个时钟周期的低电平，表明进入接收 start；

2.接收数据提取位置，前面讲发射的时候都是在波特周期开始的位置变更数据，接收数据

提取时需要在 rx 稳定时刻取数，去波特周期的中间位置取数；

3.最终输出数据锁存，在最后 1bit 存入寄存器后需要对接收数据锁存，并在之后需要给

出数据使能信号，表示输出数据有效；

Module 设计如下：

1 `timescale 1ns / 1ps
2 `define UD #1
3
4 module uart_rx # (
5 parameter BPS_NUM = 16'd433
6 // 设置波特率为 4800时， bit 位宽时钟周期个数:50MHz set 10417 40MHz set 8333
7 // 设置波特率为 9600时， bit 位宽时钟周期个数:50MHz set 5208 40MHz set 4167
8 // 设置波特率为 115200 时，bit位宽时钟周期个数:50MHz set 434 40MHz set 347
9)
10 (
11 //input ports
12 input clk,
13 input rstn,
14 input uart_rx,
15
16 //output ports
17 output reg [7:0] rx_data,
18 output reg rx_en,
19 output rx_finish
20);
21
22 // uart rx state machine's state
23 localparam IDLE = 4'h0; //空闲状态，等待开始信号到来.
24 localparam RECEIV_START = 4'h1; //接收 Uart开始信号，低电平一个波特周期.
25 localparam RECEIV_DATA = 4'h2; //接收 Uart 传输数据信号，

26 localparam RECEIV_STOP = 4'h3; //停止状态数据线是高电平，

27 localparam RECEIV_END = 4'h4; //结束中转状态.
28
29 //==
30 //wire and reg in the module
31 //==
32 reg [2:0] rx_state=0; //current state of tx state machine. 当前状态

33 reg [2:0] rx_state_n=0;//next state of tx state machine.下一个状态

34 reg [7:0] rx_data_reg; //接收数据缓冲寄存器

35 reg uart_rx_1d; //save uart_rx one cycle.保存 uart_rx一个时钟周期

36 reg uart_rx_2d; //save uart_rx one cycle.保存 uart_rx 前两个时钟周期

37 wire start; //active when start a byte receive. 检测到 start 信号标志

38 reg [15:0] clk_div_cnt; //count for division the clock.波特周期计数器

39

微信公众号：小眼睛 FPGA www.meyesemi.com

14 / 22

40 //==
41 //logic
42 //==
43 //some control single.
44 always @ (posedge clk)
45 begin
46 uart_rx_1d <= `UD uart_rx;
47 uart_rx_2d <= `UD uart_rx_1d;
48 end
49
50 assign start = (!uart_rx) && (uart_rx_1d || uart_rx_2d);
51 assign rx_finish = (rx_state == RECEIV_END);
52
53 //division the clock to satisfy baud rate.波特周期计数器

54 always @ (posedge clk)
55 begin
56 if(rx_state == IDLE || clk_div_cnt == BPS_NUM)
57 clk_div_cnt <= `UD 16'h0;
58 else
59 clk_div_cnt <= `UD clk_div_cnt + 16'h1;
60 end
61
62 // receive bit data numbers
63 //在接收数据状态中，接收的 bit位计数，每一个波特周期计数加 1
64 reg [2:0] rx_bit_cnt=0; //the bits number has transmited.
65 always @ (posedge clk)
66 begin
67 if(rx_state == IDLE)
68 rx_bit_cnt <= `UD 3'h0;
69 else if((rx_bit_cnt == 3'h7) && (clk_div_cnt == BPS_NUM))
70 rx_bit_cnt <= `UD 3'h0;
71 else if((rx_state == RECEIV_DATA) && (clk_div_cnt == BPS_NUM))
72 rx_bit_cnt <= `UD rx_bit_cnt + 3'h1;
73 else
74 rx_bit_cnt <= `UD rx_bit_cnt;
75 end
76 //==
77 //receive state machine
78 //==
79 //状态机状态跳转

80 always @(posedge clk)
81 begin
82 rx_state <= rx_state_n;
83 end
84
85 //状态机状态跳转条件及跳转规律

86 always @ (*)
87 begin
88 case(rx_state)
89 IDLE :
90 begin
91 if(start) //监测到 start 信号到来，下一状态跳转到 start 状态

92 rx_state_n = RECEIV_START;
93 else
94 rx_state_n = rx_state;
95 end

微信公众号：小眼睛 FPGA www.meyesemi.com

15 / 22

96 RECEIV_START :
97 begin
98 if(clk_div_cnt == BPS_NUM) //已完成接收 start 标志信号

99 rx_state_n = RECEIV_DATA;
100 else
101 rx_state_n = rx_state;
102 end
103 RECEIV_DATA :
104 begin
105 if(rx_bit_cnt == 3'h7 && clk_div_cnt == BPS_NUM)
106 //已完成 8bit 数据的传输

107 rx_state_n = RECEIV_STOP;
108 else
109 rx_state_n = rx_state;
110 end
111 RECEIV_STOP :
112 begin
113 if(clk_div_cnt == BPS_NUM) //已完成接收 stop 标志信号

114 rx_state_n = RECEIV_END;
115 else
116 rx_state_n = rx_state;
117 end
118 RECEIV_END :
119 begin
120 if(!uart_rx_1d)
121 //数据线重新被拉低，表示新数据传输又发送 start 标志信号，需要跳转到 start 状态

122 rx_state_n = RECEIV_START;
123 else
124 //没有其他状况出现时，回到空闲状态，等待 start 信号的到来

125 rx_state_n = IDLE;
126 end
127 default : rx_state_n = IDLE;
128 endcase
129 end
130
131 // 状态机输出

132 always @ (posedge clk)
133 begin
134 case(rx_state)
135 IDLE ,
136 RECEIV_START :
137 //在空闲和 start 状态时将接收数据缓冲寄存器和数据使能置位；

138 begin
139 rx_en <= `UD 1'b0;
140 rx_data_reg <= `UD 8'h0;
141 end
142 RECEIV_DATA :
143 begin
144 if(clk_div_cnt == BPS_NUM[15:1])
145 //在一个波特周期的中间位置取数据线上传输的数据；

146 rx_data_reg <= `UD {uart_rx , rx_data_reg[7:1]}; //以循环右移的方式将

uart_rx数据填入缓冲寄存器的最高位（Uart 传输低位在前，最后一个 bit 刚好是最高位）

147 end

微信公众号：小眼睛 FPGA www.meyesemi.com

16 / 22

148 RECEIV_STOP :
149 begin
150 rx_en <= `UD 1'b1; // 输出使能信号，表示最新的数据输出有效

151 rx_data <= `UD rx_data_reg; // 将缓冲寄存器的值赋值给输出寄存器

152 end
153 RECEIV_END :
154 begin
155 rx_data_reg <= `UD 8'h0;
156 end
157 default: rx_en <= `UD 1'b0;
158 endcase
159 end
160
161 endmodule
162

6.4.3 串口发射控制模块设计

目标：产生 1S 间隔的触发信号并输出第一个发送字节， busy 的下降沿时输出下一个字

节；

Module 如下：

1 `timescale 1ns / 1ps
2 `define UD #1
3 module uart_data_gen(
4 input clk,
5 input rstn,
6 input [7:0] read_data,
7 input tx_busy,
8 input [7:0] write_max_num,
9 output reg [7:0] write_data,
10 output reg write_en
11);
12 // set every second send a string,"====HELLO WORLD==="
13 // 设置约每秒发送一个字符串

14 reg [23:0] time_cnt=0;
15 reg [7:0] data_num;
16 always @(posedge clk)
17 begin
18 time_cnt <= `UD time_cnt + 24'd1;
19 end
20
21 // 设置串口发射工作区间

22 reg work_en=0;
23 reg work_en_1d=0;
24 always @(posedge clk)
25 begin
26 if(time_cnt == 25'd2048)
27 work_en <= `UD 1'b1;
28 else if(data_num == write_max_num-1'b1)
29 work_en <= `UD 1'b0;
30 end
31

微信公众号：小眼睛 FPGA www.meyesemi.com

17 / 22

32 always @(posedge clk)
33 begin
34 work_en_1d <= `UD work_en;
35 end
36
37 // get the tx_busy‘s falling edge 获取 tx_busy 的下降沿

38 reg tx_busy_reg=0;
39 wire tx_busy_f;
40 always @ (posedge clk) tx_busy_reg <= `UD tx_busy;
41
42 assign tx_busy_f = (!tx_busy) && (tx_busy_reg);
43
44 // 串口发射数据触发信号

45 reg write_pluse;
46 always @ (posedge clk)
47 begin
48 if(!rstn)
49 write_pluse <= `UD 1'b0;
50 else if(work_en)
51 begin
52 if(~work_en_1d || tx_busy_f)
53 write_pluse <= `UD 1'b1;
54 else
55 write_pluse <= `UD 1'b0;
56 end
57 else
58 write_pluse <= `UD 1'b0;
59 end
60
61 always @ (posedge clk)
62 begin
63 if(!rstn)
64 data_num <= `UD 8'h0;
65 else if(~work_en & tx_busy_f)
66 data_num <= 7'h0;
67 else if(write_pluse)
68 data_num <= data_num + 8'h1;
69 end
70
71 always @(posedge clk)
72 begin
73 write_en <= `UD write_pluse;
74 end
75
76 // 字符的对应 ASCII 码

77 // H:0x48 E:0x45 L:0x4C O:0x4F W:0x57 R:0x52 D:0x44
78 always @ (posedge clk)
79 begin
80 case(data_num)
81 8'h0 ,
82 8'h1 : write_data <= `UD 8'h77;// ASCII code is w
83 8'h2 : write_data <= `UD 8'h77;// ASCII code is w
84 8'h3 : write_data <= `UD 8'h77;// ASCII code is w
85 8'h4 : write_data <= `UD 8'h2E;// ASCII code is .
86 8'h5 : write_data <= `UD 8'h6D;// ASCII code is m

微信公众号：小眼睛 FPGA www.meyesemi.com

18 / 22

87 8'h6 : write_data <= `UD 8'h65;// ASCII code is e
88 8'h7 : write_data <= `UD 8'h79;// ASCII code is y
89 8'h8 : write_data <= `UD 8'h65;// ASCII code is e
90 8'h9 : write_data <= `UD 8'h73;// ASCII code is s
91 8'ha : write_data <= `UD 8'h65;// ASCII code is e
92 8'hb : write_data <= `UD 8'h6D;// ASCII code is m
93 8'hc : write_data <= `UD 8'h69;// ASCII code is i
94 8'hd : write_data <= `UD 8'h2E;// ASCII code is .
95 8'he : write_data <= `UD 8'h63;// ASCII code is c
96 8'hf : write_data <= `UD 8'h6F;// ASCII code is o
97 8'h10 : write_data <= `UD 8'h6D;// ASCII code is m
98 8'h11 ,
99 8'h12 : write_data <= `UD 8'h0d;
100 8'h13 : write_data <= `UD 8'h0a;
101 default : write_data <= `UD read_data;
102 endcase
103 end
104
105 endmodule
106

6.4.4 串口实验顶层模块设计

目标：板子每隔 1s 向串口助手发送一次 ASCII 码的“www.meyesemi.com”，通过串口助

手向板子以十六进制形式发送数字， LED 以二进制显示亮起。

Uart_data_gen 模块产生一个间隔 1S 钟的触发信号，同时输出第一个发送字节，等待

uart_tx 输出的 busy 下降沿到来，获知 uart_tx 进入空闲状态可发送下一个 byte 时，再次给

出串口发送的触发脉冲，并输出下一个字节；

Uart_rx 模块接收到数据后输出一个 rx_en 信号（接收数据使能信号）、一组接收数据信

号；接收的数据信号是锁存的，可直接点亮 LED 灯；

具体的 module 实现如下:

1 `timescale 1ns / 1ps
2 `define UD #1
3
4 module uart_top(
5 //input ports
6 input clk,
7 input rstn,
8 input uart_rx,
9
10 //output ports
11 output [7:0] led,
12 output uart_tx
13);
14

微信公众号：小眼睛 FPGA www.meyesemi.com

19 / 22

15 parameter BPS_NUM = 16'd104;
16 // 设置波特率为 4800时， bit位宽时钟周期个数:50MHz set 10417 40MHz set 8333

17 // 设置波特率为 9600时， bit位宽时钟周期个数:50MHz set 5208 40MHz set 4167

18 // 设置波特率为 115200时，bit位宽时钟周期个数:50MHz set 434 40MHz set 347 12M set 104

19 //==

20 //wire and reg in the module

21 //==

22 wire tx_busy; //transmitter is free.
23 wire rx_finish; //receiver is free.
24 wire [7:0] rx_data; //the data receive from uart_rx.
25 wire [7:0] tx_data;
26 wire tx_en; //enable transmit.
27 wire rx_en;
28 //==

29 //instance

30 //==

31 reg [7:0] receive_data;
32 always @(posedge clk) receive_data <= led;
33 uart_data_gen uart_data_gen(
34 .clk (clk),//input clk,
35 .rstn (rstn),//input rstn,
36 .read_data (receive_data),//input [7:0] read_data,
37 .tx_busy (tx_busy),//input tx_busy,
38 .write_max_num (8'h14),//input [7:0] write_max_num,
39 .write_data (tx_data),//output reg [7:0] write_data
40 .write_en (tx_en) //output reg write_en
41);
42
43 //uart transmit data module.
44 uart_tx #(
45 .BPS_NUM (BPS_NUM) //parameter BPS_NUM = 16'd434
46)
47 u_uart_tx(
48 .clk (clk),// input clk,
49 .tx_data (tx_data),// input [7:0] tx_data,
50 .tx_pluse (tx_en),// input tx_pluse,
51 .uart_tx (uart_tx),// output reg uart_tx,
52 .tx_busy (tx_busy) // output tx_busy
53);
54
55 //Uart receive data module.
56 uart_rx #(
57 .BPS_NUM (BPS_NUM) //parameter BPS_NUM = 16'd434
58)
59 u_uart_rx (
60 .clk (clk),// input clk,
61 .rstn (rstn),// input rstn,
62 .uart_rx (uart_rx),// input uart_rx,
63 .rx_data (rx_data),// output reg [7:0] rx_data,
64 .rx_en (rx_en),// output reg rx_en,
65 .rx_finish (rx_finish) // output rx_finish
66);
67 assign led = rx_data;
68
69 endmodule
70

微信公众号：小眼睛 FPGA www.meyesemi.com

20 / 22

6.5 实验现象

用 SSCOM 串口调试工具，波特率设置为 115200bps，数据格式为 1 位起始位、8 位数据

位、无校验位、1 位结束位，用 Type-C 连接开发板与电脑后有如下现象：

实验现象一：在串口工具中每隔 1S 中打印一次：“www.meyesemi.com”；

实验现象二：

在串口工具上以 Hex 格式发送 55；我们可看到 PGX-Nano 板卡上的 LED0,LED2,LED4,LED6

被点亮，LED1,LED3,LED5,LED7 为熄灭状态；

微信公众号：小眼睛 FPGA www.meyesemi.com

21 / 22

发 送 AA ； 我 们 可 看 到 PGX-Nano 板 卡 上 的 LED2,LED4,LED6,LED8 被 点 亮 ，

LED1,LED3,LED5,LED7 为熄灭状态。

微信公众号：小眼睛 FPGA www.meyesemi.com

22 / 22

也可以试着发送其他数据（00~FF）,看一下 LED 灯的变化；

	6.串口收发实验例程
	6.1 PGX-Nano开发板简介
	6.2 实验要求
	6.3 实验原理
	6.3.1 串口原理
	6.3.2 串口传输步骤
	6.3.2.1 串口发送流程
	6.3.2.2 串口接收流程

	6.3.3 串口发送字符

	6.4 实验源码设计
	6.4.1 串口发射模块设计
	6.4.2 串口接收模块设计
	6.4.3 串口发射控制模块设计
	6.4.4 串口实验顶层模块设计

	6.5 实验现象

