
8.密码锁

8.1 实验目的

利用盘古 PGX-Nano板卡上的按键，拨码开关以及数码管实现一种简单的密

码锁；

8.2 实验要求

利用拨码开关设置密码，使用按键输入开锁密码。当开锁密码与设定密码相

同时开锁成功，数码管显示 8888，密码错误时显示 7777。

SW0~SW3 设置 2 位数密码，每两位设置一位密码，SW[1:0]设置第一位数

据对应的二进制数值，SW[3:2]设置第二位数据对应的二进制数值。所以密码是

由 0，1，2，3 组成的四位数。

S1-S0 按键作为密码输入，按键按一下数字加 1，数字由数码管显示，数字

在 0，1，2，3 中循环。

S2 作为确认按键，按下 S2，输入的密码与设置的密码比对，如相同则显

示 8888，若不同则显示 7777。 按下 S3 清零，按下后数码管显示 0000，可以

重新输密码。

8.3 实验原理

原理上与前一个章节的序列检测是类似的，在前一个实验的基础上有了一些

延伸；

序列对比的位宽发生改变，单个数据占 2bit，一个按键控制输入密码数据设

置为 2bit即可；对比与重新开始在此实验用两个按键实现，一个确认对比，一个

清空结果；

8.4 实验源码（完整源码查看 demo源文件）

根据需求我们需要如下三个子模块：

①按键控制模块；

1、对 4个按键输入信号均做消抖处理

2、S3和 S2取下降沿输出

3、S[1：0]以下降沿来变更各自的输入密码，每次数字加 1（0～3循环，2bit

即可）



②数码管显示模块；

显示状态有两种：

密码输入状态：

1、上电默认状态； 2、S3下降沿触发进入重置状态；3、实时显

示 2位输入密码；

密码验证状态：

1、S2下降沿触发进入；

2、显示密码验证结果，正确则显示 8888，错误则显示 7777；

③密码验证模块；

S2下降沿触发使能工作； S2下降沿触发所存输入密码，并与拨码开

关设置的密码进行比较；

输出密码比较结果，提供个数码管显示模块。

8.4.1 顶层模块设计

顶层模块与上述三个模块之间的关系如下图：
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输入输出信号如下表：

信号 位宽 方向 描述

clk 1 输入 外部输入时钟，输入时钟为 50MHz
key 2 输入 轻触按键输入信号， K0~K1输入

enter 1 输入 密码确认比对信号， K2输入

init 1 输入 密码确认重新输入信号， K3输入

sw 4 输入 密码设置输入信号， SW0~3输入

smg 8 输出 密码对比结果显示数码管段选信号输出

dig 4 输出 密码对比结果显示数码管位选信号输出

Module设计如下：

`timescale 1ns / 1ps



`define UD #1
module lock_top(

input clk,
input [1:0] key,
input enter,
input init,
input [3:0] sw,

output [7:0] smg,
output [3:0] dig

);

wire enter_trig;
wire init_trig;
wire [3:0] ctrl;
wire com_result;

key_ctl key_ctl(
.clk ( clk ),//input clk,
.key ( key ),//input [1:0] key,
.enter ( enter ),//input enter,
.init ( init ),//input init,

.enter_trig ( enter_trig ),//output enter_trig,

.init_trig ( init_trig ),//output init_trig,

.ctrl ( ctrl ) //output [3:0] ctrl
);

compare compare(
.clk ( clk ),//input clk,
.sw ( sw ),//input [3:0] sw,
.ctrl ( ctrl ),//input [3:0] ctrl,
.enter_trig ( enter_trig ),//input enter_trig,
.com_result ( com_result ) //output com_result

);

seq_display seq_display(
.clk ( clk ),//input clk,
.enter_trig ( enter_trig ),//input enter_trig,
.init_trig ( init_trig ),//input init_trig,
.com_result ( com_result ),//input com_result,
.ctrl ( ctrl ),//input [3:0] ctrl,

.smg ( smg ),//output reg [7:0] smg,



.dig ( dig ) //output reg [3:0] dig
);

endmodule

8.4.2 按键控制设计

`timescale 1ns / 1ps
`define UD #1
module key_ctl(

input clk,
input [1:0] key,
input enter,
input init,

output enter_trig,
output init_trig,
output [3:0] ctrl

);

wire [3:0] btn_deb;
// 按键消抖

btn_deb#(
.BTN_WIDTH ( 4'd4 ) , //parameter BTN_WIDTH = 4'd8
.MS_20 ( 20'd1_000_000 )

) btn_deb_key
(

.clk ( clk ),//input clk,

.btn_in ( {enter,init,key} ),//input [BTN_WIDTH-1:0] btn_in,

.btn_deb ( btn_deb ) //output reg [BTN_WIDTH-1:0]btn_deb
);

reg [1:0] S1_push_cnt=2'd0;
reg [1:0] S2_push_cnt=2'd0;

reg btn1_deb_1d,btn2_deb_1d;
reg enter_deb_1d,init_deb_1d;

assign enter_trig = ~btn_deb[3] & enter_deb_1d;
assign init_trig = ~btn_deb[2] & init_deb_1d;

always @(posedge clk)



begin
btn1_deb_1d <= `UD btn_deb[0];
btn2_deb_1d <= `UD btn_deb[1];
init_deb_1d <= `UD btn_deb[2];
enter_deb_1d <= `UD btn_deb[3];

end

always @(posedge clk)
begin

if(~btn_deb[2] & init_deb_1d)
S1_push_cnt <= `UD 2'd0;

else if(~btn_deb[0] & btn1_deb_1d)
begin

S1_push_cnt <= `UD S1_push_cnt + 2'd1;
end

end

always @(posedge clk)
begin

if(~btn_deb[2] & init_deb_1d)
S2_push_cnt <= `UD 2'd0;

else if(~btn_deb[1] & btn2_deb_1d)
begin

S2_push_cnt <= `UD S2_push_cnt + 2'd1;
end

end

assign ctrl = {S2_push_cnt,S1_push_cnt};

endmodule

8.4.3 按键消抖设计

`timescale 1ns / 1ps
`define UD #1
module btn_deb#(

parameter BTN_WIDTH = 4'd8,
parameter MS_20 = 20'd1_000_000

)
(

input clk,//50MHz
input [BTN_WIDTH-1:0] btn_in,



output reg [BTN_WIDTH-1:0] btn_deb
);
//========================================================

==========================
reg [19:0] time_cnt= 20'd0;
always@(posedge clk)
begin

if(time_cnt ==MS_20 - 1'b1)
time_cnt <= 20'd0;

else
time_cnt <= time_cnt + 1'd1;

end

always @(posedge clk)
begin

if(time_cnt ==MS_20 - 1'b1)
btn_deb <= btn_in;

end

endmodule

8.4.4 对比模块设计

`timescale 1ns / 1ps
`define UD #1
module compare(

input clk,
input [3:0] sw,
input [3:0] ctrl,
input enter_trig,
output com_result

);
//========================================================

======================
//锁存当前的输入密码；

reg [3:0] ctrl_1d;
always @(posedge clk)
begin

if(enter_trig)
ctrl_1d <= `UD ctrl;

end
assign com_result = (ctrl_1d == sw);

endmodule



8.4.5 显示模块设计

此模块设计需要注意数码管显示的两种模式：密码输入模式与密码对比结果

显示模式；两种模式的切换由 enter_trig与 init_trig触发进入；

对于数码管的显示控制模块这里就不重复描述了；

8.5 实验现象

验证步骤：

1、 调整输入序列，更改拨码开关的输入值（SW[3：0]）；

2、 调整固定序列，通过轻触按键 S1~S0调整输入密码，数码管实时显示输

入密码；

3、 按下轻触按键 S2，触发进行密码比对，并且数码管显示比对结果；

4、 按下轻触按键 S3，进入重新输入密码状态，重新执行前面三个步骤；

实验现象

当 SW[3:0]=8’b1010;当输入密码状态时显示 0022时，按下 S2后数码管显示

数字 8888；当输入密码状态时显示不是 0022时，按下 S2后数码管显示数字 7777；

按下 S3后重新调整密码，进入输入密码状态；

当 SW[3:0]=8’b1100;当输入密码状态时显示 0030时，按下 S2后数码管显示

数字 8888；当输入密码状态时显示不是 0030时，按下 S2后数码管显示数字 7777；

按下 S3后重新调整密码，进入输入密码状态；
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