
8.密码锁

8.1 实验目的

利用盘古 PGX-Nano板卡上的按键，拨码开关以及数码管实现一种简单的密

码锁；

8.2 实验要求

利用拨码开关设置密码，使用按键输入开锁密码。当开锁密码与设定密码相

同时开锁成功，数码管显示 8888，密码错误时显示 7777。

SW0~SW3 设置 2 位数密码，每两位设置一位密码，SW[1:0]设置第一位数

据对应的二进制数值，SW[3:2]设置第二位数据对应的二进制数值。所以密码是

由 0，1，2，3 组成的四位数。

S1-S0 按键作为密码输入，按键按一下数字加 1，数字由数码管显示，数字

在 0，1，2，3 中循环。

S2 作为确认按键，按下 S2，输入的密码与设置的密码比对，如相同则显

示 8888，若不同则显示 7777。 按下 S3 清零，按下后数码管显示 0000，可以

重新输密码。

8.3 实验原理

原理上与前一个章节的序列检测是类似的，在前一个实验的基础上有了一些

延伸；

序列对比的位宽发生改变，单个数据占 2bit，一个按键控制输入密码数据设

置为 2bit即可；对比与重新开始在此实验用两个按键实现，一个确认对比，一个

清空结果；

8.4 实验源码（完整源码查看 demo源文件）

根据需求我们需要如下三个子模块：

①按键控制模块；

1、对 4个按键输入信号均做消抖处理

2、S3和 S2取下降沿输出

3、S[1：0]以下降沿来变更各自的输入密码，每次数字加 1（0～3循环，2bit

即可）

②数码管显示模块；

显示状态有两种：

密码输入状态：

1、上电默认状态； 2、S3下降沿触发进入重置状态；3、实时显

示 2位输入密码；

密码验证状态：

1、S2下降沿触发进入；

2、显示密码验证结果，正确则显示 8888，错误则显示 7777；

③密码验证模块；

S2下降沿触发使能工作； S2下降沿触发所存输入密码，并与拨码开

关设置的密码进行比较；

输出密码比较结果，提供个数码管显示模块。

8.4.1 顶层模块设计

顶层模块与上述三个模块之间的关系如下图：

Lock TOP

密码设定比较 密码输入控制
密码与结果显示

控制

输入输出信号如下表：

信号 位宽 方向 描述

clk 1 输入 外部输入时钟，输入时钟为 50MHz
key 2 输入 轻触按键输入信号， K0~K1输入

enter 1 输入 密码确认比对信号， K2输入

init 1 输入 密码确认重新输入信号， K3输入

sw 4 输入 密码设置输入信号， SW0~3输入

smg 8 输出 密码对比结果显示数码管段选信号输出

dig 4 输出 密码对比结果显示数码管位选信号输出

Module设计如下：

`timescale 1ns / 1ps

`define UD #1
module lock_top(

input clk,
input [1:0] key,
input enter,
input init,
input [3:0] sw,

output [7:0] smg,
output [3:0] dig

);

wire enter_trig;
wire init_trig;
wire [3:0] ctrl;
wire com_result;

key_ctl key_ctl(
.clk (clk),//input clk,
.key (key),//input [1:0] key,
.enter (enter),//input enter,
.init (init),//input init,

.enter_trig (enter_trig),//output enter_trig,

.init_trig (init_trig),//output init_trig,

.ctrl (ctrl) //output [3:0] ctrl
);

compare compare(
.clk (clk),//input clk,
.sw (sw),//input [3:0] sw,
.ctrl (ctrl),//input [3:0] ctrl,
.enter_trig (enter_trig),//input enter_trig,
.com_result (com_result) //output com_result

);

seq_display seq_display(
.clk (clk),//input clk,
.enter_trig (enter_trig),//input enter_trig,
.init_trig (init_trig),//input init_trig,
.com_result (com_result),//input com_result,
.ctrl (ctrl),//input [3:0] ctrl,

.smg (smg),//output reg [7:0] smg,

.dig (dig) //output reg [3:0] dig
);

endmodule

8.4.2 按键控制设计

`timescale 1ns / 1ps
`define UD #1
module key_ctl(

input clk,
input [1:0] key,
input enter,
input init,

output enter_trig,
output init_trig,
output [3:0] ctrl

);

wire [3:0] btn_deb;
// 按键消抖

btn_deb#(
.BTN_WIDTH (4'd4) , //parameter BTN_WIDTH = 4'd8
.MS_20 (20'd1_000_000)

) btn_deb_key
(

.clk (clk),//input clk,

.btn_in ({enter,init,key}),//input [BTN_WIDTH-1:0] btn_in,

.btn_deb (btn_deb) //output reg [BTN_WIDTH-1:0]btn_deb
);

reg [1:0] S1_push_cnt=2'd0;
reg [1:0] S2_push_cnt=2'd0;

reg btn1_deb_1d,btn2_deb_1d;
reg enter_deb_1d,init_deb_1d;

assign enter_trig = ~btn_deb[3] & enter_deb_1d;
assign init_trig = ~btn_deb[2] & init_deb_1d;

always @(posedge clk)

begin
btn1_deb_1d <= `UD btn_deb[0];
btn2_deb_1d <= `UD btn_deb[1];
init_deb_1d <= `UD btn_deb[2];
enter_deb_1d <= `UD btn_deb[3];

end

always @(posedge clk)
begin

if(~btn_deb[2] & init_deb_1d)
S1_push_cnt <= `UD 2'd0;

else if(~btn_deb[0] & btn1_deb_1d)
begin

S1_push_cnt <= `UD S1_push_cnt + 2'd1;
end

end

always @(posedge clk)
begin

if(~btn_deb[2] & init_deb_1d)
S2_push_cnt <= `UD 2'd0;

else if(~btn_deb[1] & btn2_deb_1d)
begin

S2_push_cnt <= `UD S2_push_cnt + 2'd1;
end

end

assign ctrl = {S2_push_cnt,S1_push_cnt};

endmodule

8.4.3 按键消抖设计

`timescale 1ns / 1ps
`define UD #1
module btn_deb#(

parameter BTN_WIDTH = 4'd8,
parameter MS_20 = 20'd1_000_000

)
(

input clk,//50MHz
input [BTN_WIDTH-1:0] btn_in,

output reg [BTN_WIDTH-1:0] btn_deb
);
//==

==========================
reg [19:0] time_cnt= 20'd0;
always@(posedge clk)
begin

if(time_cnt ==MS_20 - 1'b1)
time_cnt <= 20'd0;

else
time_cnt <= time_cnt + 1'd1;

end

always @(posedge clk)
begin

if(time_cnt ==MS_20 - 1'b1)
btn_deb <= btn_in;

end

endmodule

8.4.4 对比模块设计

`timescale 1ns / 1ps
`define UD #1
module compare(

input clk,
input [3:0] sw,
input [3:0] ctrl,
input enter_trig,
output com_result

);
//==

======================
//锁存当前的输入密码；

reg [3:0] ctrl_1d;
always @(posedge clk)
begin

if(enter_trig)
ctrl_1d <= `UD ctrl;

end
assign com_result = (ctrl_1d == sw);

endmodule

8.4.5 显示模块设计

此模块设计需要注意数码管显示的两种模式：密码输入模式与密码对比结果

显示模式；两种模式的切换由 enter_trig与 init_trig触发进入；

对于数码管的显示控制模块这里就不重复描述了；

8.5 实验现象

验证步骤：

1、 调整输入序列，更改拨码开关的输入值（SW[3：0]）；

2、 调整固定序列，通过轻触按键 S1~S0调整输入密码，数码管实时显示输

入密码；

3、 按下轻触按键 S2，触发进行密码比对，并且数码管显示比对结果；

4、 按下轻触按键 S3，进入重新输入密码状态，重新执行前面三个步骤；

实验现象

当 SW[3:0]=8’b1010;当输入密码状态时显示 0022时，按下 S2后数码管显示

数字 8888；当输入密码状态时显示不是 0022时，按下 S2后数码管显示数字 7777；

按下 S3后重新调整密码，进入输入密码状态；

当 SW[3:0]=8’b1100;当输入密码状态时显示 0030时，按下 S2后数码管显示

数字 8888；当输入密码状态时显示不是 0030时，按下 S2后数码管显示数字 7777；

按下 S3后重新调整密码，进入输入密码状态；

	8.密码锁
	8.1 实验目的
	8.2 实验要求
	8.3 实验原理
	8.4 实验源码（完整源码查看demo源文件）
	8.4.1 顶层模块设计
	8.4.2 按键控制设计
	8.4.3 按键消抖设计
	8.4.4 对比模块设计
	8.4.5 显示模块设计

	8.5 实验现象

