
1.3寸 oled屏显示实验说明

1、实验简介

实验使用“小眼睛科技”公司的 FPGA 开发板以及 1.3 寸 oled屏 PMOD 模块，

使用 SPI通信协议点亮 1.3 寸 OLED 屏。

2、实验目的

在 1.3寸 OLED 屏幕上显示“深圳市小眼睛科技”8 个汉字。

3、实验使用模块介绍

实验使用“小眼睛科技”的 PMOD-OLED 模块，OLED 尺寸为 1.3寸，显示颜

色为单色白色，使用 SPI通信协议进行寄存器配置。

4、实验原理

(1) OLED发光原理

OLED全称 OrganicLight-Emitting Diode，即有机发光二极管，发光强度与注入

的电流成正比，且不需要背光电源。

OLED结构图如下图所示，自上到下由封装层、负极、电子传输层、发光层、

空穴传输层、空穴注入层、正极、玻璃组成：

OLED 的发光位置在发光层，在电流的驱动下，电子通过电子传输层进入发

光层，空穴通过空穴注入层进入发光层，二者在发光层发成复合反应，从而使发

光层的发光材料发光。

(2) OLED显示原理

实验中使用的“小眼睛科技”公司的 PMOD-OLED模块，OLED 显示原理如下

所述。

1) 在 OLED模块使用前需要先对模块进行指令配置，相关指令请参考数据手册

0.96 UN-2864KSWEG01.pdf。

需注意的时 DEMO 中配置的屏幕刷新方向：左-->右 ；

2) 1.3寸 PMOD-OLED模块的像素点共 64*128 个像素点，其中 64 行像素点分为

8页，每 8 行为 1 页。

3) 向 1.3 寸 PMOD-OLED 模块像素点寄存器写入像素点数据时，需要按页进行

写操作。

4)

在进行页写操作时，需要通过指令传达页地址、起始列地址等信息。

页地址指令：8’hb0 + PAGE ；（PAGE为页地址）

列地址指令：8’h00 + column[3:0] + 8’d2；(加 2 为列地址补偿)

8’h10 + column[7:4] ；（column为起始列地址）

（一般设置起始列地址为 00）

5) 向像素点寄存器写数据时，写入 1，则点亮此像素点，写入 0 则不点亮此像

素点，由上述可知每页为 8 行 128列像素点，配置屏幕刷新方向为从左到右，

则写入像素点的数据与像素位置对应关系如下所述：

一页对应屏幕的一个长条形区域，以 8bit数据为一组，则一组数据对应一列，

8bit数据中最先被写入的 1bit数据刷新在长条形区域的下方，依次由下到上

进行刷新，写完一列后再写下一列，列的刷新方向根据配置由左到右刷新。

整体呈现 N字形刷新走向。

5、实验代码设计

实验代码 module框架如下图所示：

模块注释如下表所示：

module 名 注释

oled_test 顶层

time_delay 延时模块

display_initial OLED 初始化指令配置模块

image_send 图像数据发送模块

command_data_send SPI 驱动控制发送模块

顶层代码如下所示：

在点亮 OLED 屏前需要先对 OLED 屏进行指令配置，在此期间需要保持一段

时间复位状态，在复位结束后仍需等待一段时间后才能进行指令配置；在配置完

成后，按照像素刷新顺序对像素点寄存器进行刷新，从而实现点亮屏幕并在屏幕

上显示期望的图像。注意使用 SPI 发送数据时，需要遵循手册的时序标准，具体

内容请参考：GMO13001（1.3 模块）SERIES数据手册。

module oled_test(
input sys_clk /* synthesis PAP_MARK_DEBUG="true" */,//50MHz
input rst_n ,
output rs ,//地址数据切换信号

output reset ,
output scl ,
output sda /* synthesis PAP_MARK_DEBUG="true" */
);

wire cs ;

parameter time_delay1 = 32'd499_999 ;
parameter time_delay2 = 32'd499_999 ;

///
wire clk_5 ; //5MHz
wire clk ;
wire rst_n ;
reg key_reg ;
reg rst_reg = 1'b0;
reg [7:0]cnt_clk ;

wire delay_end_0 /* synthesis PAP_MARK_DEBUG="true" */;
wire delay_end_1 /* synthesis PAP_MARK_DEBUG="true" */;
wire delay_start_0 /* synthesis PAP_MARK_DEBUG="true" */;
wire delay_start_1 /* synthesis PAP_MARK_DEBUG="true" */;
wire sda_start_init /* synthesis PAP_MARK_DEBUG="true" */;
wire [8:0]data_out_init /* synthesis PAP_MARK_DEBUG="true" */ ;
wire sda_end_init /* synthesis PAP_MARK_DEBUG="true" */;
wire initial_end /* synthesis PAP_MARK_DEBUG="true" */;

wire sda_end /* synthesis PAP_MARK_DEBUG="true" */;
wire sda_start /* synthesis PAP_MARK_DEBUG="true" */;
wire [8:0]sda_data /* synthesis PAP_MARK_DEBUG="true" */;
wire start /* synthesis PAP_MARK_DEBUG="true" */;
wire send_end /* synthesis PAP_MARK_DEBUG="true" */;
wire [8:0]data_send /* synthesis PAP_MARK_DEBUG="true" */;

////////////////////////CLK_GEN///////////////////////////////////////
PLL u_pll (
.clkin1(sys_clk), // input
.lock(), // output
.clkout0(clk) // output

);

///////////////////////delay//
time_delay time_delay_first(

.clk (clk) , //5MHz

.rst_n (rst_n) ,

.delay_start (delay_start_0) ,

.delay_parameter (time_delay1) ,

.delay_end (delay_end_0)
);

time_delay time_delay_second(
.clk (clk) , //5MHz

.rst_n (rst_n) ,

.delay_start (delay_start_1) ,

.delay_parameter (time_delay2) ,

.delay_end (delay_end_1)
);
//

command_data_send command_data_send(
.clk (clk) ,
.rst_n (rst_n) ,
.start (start) ,//input

.rs_ctrl (data_send[8]) ,//input

.data_in (data_send[7:0]) ,//input

.send_end (send_end) ,//input

.cs (cs) ,//output

.rs (rs) ,//output

.scl (scl) ,//output

.sda (sda) //output
);
///////////////////////////初始化//////////////////////////////////////

display_initial display_initial(
.clk (clk) ,
.rst_n (rst_n) ,
.delay_end_0 (delay_end_0) ,
.delay_end_1 (delay_end_1) ,
.sda_end (sda_end_init) ,
.delay_start_0 (delay_start_0) ,
.delay_start_1 (delay_start_1) ,
.sda_start (sda_start_init) ,
.data_out (data_out_init) ,//[8:0]
.reset (reset) ,
.initial_end (initial_end)

);

///////////////////////////图像信息/////////////////////////////////////

image_send image_send(
.clk (clk) ,
.rst_n (rst_n) ,
.initial_end (initial_end) ,
.sda_end (sda_end) ,
.sda_start (sda_start) ,
.sda_data (sda_data) //[8:0]

);

assign start = (initial_end)? sda_start : sda_start_init ;
assign sda_end = (initial_end)? send_end : 1'b0 ;
assign sda_end_init = (initial_end)? 1'b0 : send_end ;
assign data_send = (initial_end)? sda_data : data_out_init ;

endmodule

延时模块

module time_delay (
input clk ,//5MHz
input rst_n ,
input delay_start ,
input [31:0]delay_parameter ,
output reg delay_end

);
reg [31:0]cnt_delay ;
reg delay_flag ;

always @(posedge clk) begin
if (~rst_n)

cnt_delay <= 32'd0 ;
else if (cnt_delay >= delay_parameter)

cnt_delay <= 32'd0 ;
else if (delay_flag)

cnt_delay <= cnt_delay + 32'b1 ;
else

cnt_delay <= 32'd0 ;
end

always @(posedge clk) begin
if (~rst_n)

delay_flag <= 1'b0 ;
else if (cnt_delay >= delay_parameter)

delay_flag <= 1'b0 ;
else if (delay_start == 1'b1)

delay_flag <= 1'b1 ;
else

delay_flag <= delay_flag ;
end

always @(posedge clk) begin
if (~rst_n)

delay_end <= 1'b0 ;
else if (cnt_delay >= delay_parameter)

delay_end <= 1'b1 ;
else

delay_end <= 1'b0 ;
end
endmodule

OLED初始化指令发送模块：

module display_initial (
input clk ,
input rst_n ,
input delay_end_0 ,
input delay_end_1 ,
input sda_end ,
output reg delay_start_0 ,
output reg delay_start_1 ,
output reg sda_start ,
output reg [8:0]data_out ,
output reg reset ,
output reg initial_end

);

reg [6:0]cnt_index /* synthesis PAP_MARK_DEBUG="true" */;
reg flag /* synthesis PAP_MARK_DEBUG="true" */;
reg [11:0]index /* synthesis PAP_MARK_DEBUG="true" */;

///

reg [8:0] state ;

parameter IDLE = 9'b000_000_001 ;
parameter state_reset = 9'b000_000_010 ;//send
delay_start_0
parameter state_reset_delay = 9'b000_000_100 ;//wait delay 255ms
parameter state_command = 9'b000_001_000 ;//send
delay_start_1
parameter state_command_delay = 9'b000_010_000 ;//wait delay 120ms
parameter state_index_begin = 9'b000_100_000 ;//send sda_start
and data_out
parameter state_index_wait = 9'b001_000_000 ;//wait for the data
to finish sending
parameter state_index_arbi = 9'b010_000_000 ;//check whather
the index has been send
parameter state_end = 9'b100_000_000 ;//send initial end

///

always @(posedge clk) begin
if (~rst_n) begin

state <= IDLE ;
cnt_index <= 7'b0 ;

flag <= 1'b0 ;
end
else begin

case (state)
IDLE : begin

state <= state_reset ;
end
state_reset : begin

state <= state_reset_delay ;
end
state_reset_delay : begin

if ((delay_end_0) && (~flag))begin
state <= state_reset ;
flag <= ~flag ;

end
else if ((delay_end_0) && (flag))begin

state <= state_command ;
flag <= ~flag ;

end
else begin

state <= state_reset_delay ;
flag <= flag ;

end
end
state_command : begin

state <= state_index_begin ;
end
state_command_delay : begin

if ((delay_end_1) && (~flag))begin
state <= state_command ;
flag <= ~flag ;

end
else if ((delay_end_1) && (flag))begin

state <= state_index_begin ;
flag <= ~flag ;

end
else begin

state <= state_command_delay ;
flag <= flag ;

end
end
state_index_begin : begin

state <= state_index_wait ;
end

state_index_wait : begin
if (sda_end)

state <= state_index_arbi ;
else

state <= state_index_wait ;
end
state_index_arbi : begin

if (cnt_index >= 7'd24) begin
state <= state_end ;
cnt_index <= 7'd0 ;

end
else if (cnt_index <= 7'd1) begin

state <= state_command_delay ;
cnt_index <= cnt_index + 7'd1 ;

end
else begin

state <= state_index_begin ;
cnt_index <= cnt_index + 7'd1 ;

end
end
state_end : begin

state <= state_end ;
end
default: begin state <= IDLE ;

cnt_index <= 7'b0 ;
flag <= flag ;

end
endcase

end
end

///

always @(posedge clk) begin
if (~rst_n)

delay_start_0 <= 1'b0 ;
else if (state == state_reset)

delay_start_0 <= 1'b1 ;
else

delay_start_0 <= 1'b0 ;
end

always @(posedge clk) begin
if (~rst_n)

delay_start_1 <= 1'b0 ;
else if ((state == state_index_arbi)&&(cnt_index <= 7'd1))

delay_start_1 <= 1'b1 ;
else

delay_start_1 <= 1'b0 ;
end

///

always @(posedge clk) begin
if (~rst_n)

reset <= 1'b0 ;
else if (state == state_reset)

reset <= flag ;
else

reset <= reset ;
end

//

always @(posedge clk) begin
if (~rst_n)

sda_start <= 1'b0 ;
else if (state == state_index_begin)

sda_start <= 1'b1 ;
else

sda_start <= 1'b0 ;
end

always @(posedge clk) begin
if (~rst_n)

data_out <= 9'd0 ;
else if (state == state_index_begin)

data_out <= index[8:0];
else

data_out <= data_out ;
end

///
always @(posedge clk) begin

if (~rst_n)
initial_end <= 1'b0 ;

else if (state == state_end)
initial_end <= 1'b1 ;

else
initial_end <= 1'b0 ;

end

//

always @(*) begin
case (cnt_index)

0 :index <= 12'h0_AE ;
1 :index <= 12'h0_D5 ;
2 :index <= 12'h0_80 ;
3 :index <= 12'h0_A8 ;
4 :index <= 12'h0_3F ;
5 :index <= 12'h0_D3 ;
6 :index <= 12'h0_00 ;
7 :index <= 12'h0_40 ;
8 :index <= 12'h0_8D ;
9 :index <= 12'h0_14 ;
10 :index <= 12'h0_20 ;
11 :index <= 12'h0_02 ;
12 :index <= 12'h0_A1 ;
13 :index <= 12'h0_C8 ;
14 :index <= 12'h0_DA ;
15 :index <= 12'h0_12 ;
16 :index <= 12'h0_81 ;
17 :index <= 12'h0_66 ;
18 :index <= 12'h0_D9 ;
19 :index <= 12'h0_F1 ;
20 :index <= 12'h0_DB ;
21 :index <= 12'h0_30 ;
22 :index <= 12'h0_A4 ;
23 :index <= 12'h0_A6 ;
24 :index <= 12'h0_AF ;
default: index <= 12'h0_af ;

endcase
end

endmodule

SPI数据发送模块

module command_data_send (
input clk ,
input rst_n ,
input start ,
input rs_ctrl ,
input [7:0] data_in ,
output send_end ,
output cs ,
output rs ,
output scl ,
output sda

);

reg [7:0]sda_data /* synthesis PAP_MARK_DEBUG="true" */;
reg rs_reg /* synthesis PAP_MARK_DEBUG="true" */;
reg [3:0]cnt /* synthesis PAP_MARK_DEBUG="true" */;
reg [4:0]state /* synthesis PAP_MARK_DEBUG="true" */;
wire sda_data_in /* synthesis PAP_MARK_DEBUG="true" */;
wire sda_data_out /* synthesis PAP_MARK_DEBUG="true" */;

parameter IDLE = 5'b00001 ;
parameter CS_LOW = 5'b00010 ;
parameter SDA_SEND = 5'b00100 ;
parameter CS_HIGH = 5'b01000 ;
parameter END_STATE = 5'b10000 ;

///////////////////////////进行锁存/////////////////////////

always @(posedge clk) begin
if (~rst_n)

sda_data <= 8'd0 ;
else if (start)

sda_data <= data_in[7:0] ;
else

sda_data <= sda_data ;
end

always @(posedge clk) begin
if (~rst_n)

rs_reg <= 1'b1 ;
else if (start)

rs_reg <= rs_ctrl ;
else

rs_reg <= rs_reg ;
end

///////////////////////////状态机////////////////////////////////

always @(posedge clk) begin
if (~rst_n) begin

state <= IDLE ;
cnt <= 4'd0 ;

end
else begin

case (state)
IDLE :begin

if (start)
state <= CS_LOW ;

else
state <= IDLE ;

end
CS_LOW :begin

state <= SDA_SEND ;
end
SDA_SEND:begin

if (cnt >= 4'd7) begin
state <= CS_HIGH ;
cnt <= 4'd0 ;

end
else begin

state <= SDA_SEND ;
cnt <= cnt + 1'b1 ;

end
end
CS_HIGH :begin

state <= END_STATE ;
end
END_STATE:begin

state <= IDLE ;
end
default:begin

state <= IDLE ;
cnt <= 4'd0 ;

end
endcase

end
end

/////////////////////输出赋值///
assign rs = rs_reg ;
assign cs = ((state == CS_LOW)||(state == SDA_SEND)||(state == CS_HIGH))?
1'b0 : 1'b1 ;

assign scl = (state == SDA_SEND)? ~clk : 1'b1 ;
assign sda_data_out = (state == SDA_SEND)? sda_data[7-cnt] : 1'b1 ;

assign sda = (state == SDA_SEND)? sda_data_out : 1'b0 ;
assign sda_data_in = sda ;

assign send_end = (state == END_STATE)? 1'b1 : 1'b0 ;
endmodule

图像数据发送模块

module image_send (
input clk ,
input rst_n ,
input initial_end ,
input sda_end ,
output sda_start ,
output [8:0] sda_data

);

reg [9:0]addr /* synthesis PAP_MARK_DEBUG="true" */;
reg [1:0]cnt /* synthesis PAP_MARK_DEBUG="true" */; //
0:column 1:page 2:data
reg [7:0]cnt_c /* synthesis PAP_MARK_DEBUG="true" */;
reg [2:0]cnt_p /* synthesis PAP_MARK_DEBUG="true" */;
reg [8:0]data_sig /* synthesis PAP_MARK_DEBUG="true" */;
reg start_reg /* synthesis PAP_MARK_DEBUG="true" */;
reg data_start /* synthesis PAP_MARK_DEBUG="true" */;
wire [7:0]rd_data /* synthesis PAP_MARK_DEBUG="true" */;
wire [7:0]order[0:2]/* synthesis PAP_MARK_DEBUG="true" */;
//assign order[0] = 8'h22 ;
//assign order[1] = 8'hb0 + cnt_p;
//assign order[2] = 8'h07 ;
assign order[0] = 8'hb0 + cnt_p;
assign order[1] = 8'h10 + ((cnt_c + 8'd2)>>4) ;
assign order[2] = 8'h00 + ((cnt_c + 8'd2)&8'h0f);
reg [6:0]state /* synthesis PAP_MARK_DEBUG="true" */;

parameter idle = 7'b0_000_001;
parameter state_command = 7'b0_000_010; //send instruction
parameter state_command_wait = 7'b0_000_100; //wait for sending to
complete
parameter state_send = 7'b0_001_000; //send addr
parameter state_send_wait = 7'b0_010_000;
parameter state_wait = 7'b0_100_000; //send data
parameter state_end = 7'b1_000_000;

//

always @(posedge clk) begin
if (~rst_n)

state <= idle ;
else begin

case (state)
idle :begin

if (initial_end)
state <= state_command ;

else
state <= idle ;

end
state_command :begin

state <= state_command_wait ;
end
state_command_wait :begin

if ((cnt >= 2'd3)&&(sda_end))
state <= state_send ;

else if (sda_end)
state <= state_command ;

else
state <= state_command_wait ;

end
state_send :begin

state <= state_send_wait ;
end
state_send_wait :begin

if ((cnt_c >= 8'd128)&&(sda_end))
state <= state_wait ;

else if (sda_end)
state <= state_send ;

else
state <= state_send_wait ;

end
state_wait :begin

if (cnt_p >= 3'd7)
state <= state_end ;

else
state <= state_command ;

end
state_end : begin

state <= state_end ;
end
default:state <= idle ;

endcase
end

end

///

always @(posedge clk) begin
if (~rst_n) begin

cnt_p <= 3'd0 ;
cnt_c <= 8'd0 ;

end
else if (state == state_send)begin

cnt_p <= cnt_p ;
cnt_c <= cnt_c + 8'd1 ;

end
else if (state == state_wait)begin

cnt_p <= cnt_p + 3'd1 ;
cnt_c <= 8'd0 ;

end
else if (state == state_end)begin

cnt_p <= 3'd0 ;
cnt_c <= 8'd0 ;

end
end
///
always @(posedge clk) begin

if (~rst_n)
cnt <= 2'd0 ;

else if (state ==state_command)
cnt <= cnt + 2'd1 ;

else if (state == state_send)
cnt <= 2'd0 ;

end
///
always @(posedge clk) begin

if (~rst_n)
data_sig <= 9'd0 ;

else if (state == state_command)
data_sig <= {1'b0 ,order[cnt] };

else if (state == state_send)
data_sig <= {1'b1 ,rd_data};

else
data_sig <= data_sig ;

end

always @(posedge clk) begin
if (~rst_n)

start_reg <= 1'b0 ;
else if ((state == state_command)||(state == state_send))

start_reg <= 1'b1 ;

else
start_reg <= 1'b0 ;

end

assign sda_data = data_sig ;
assign sda_start = start_reg ;

always @(posedge clk) begin
if (~rst_n)

addr <= 10'd0 ;
else if (state == state_send)

addr <= addr + 10'd1 ;
else if (state == state_end)

addr <= 10'd0 ;
end

rom_image rom_image_display (
.addr(addr), // input [9:0]
.clk(clk), // input
.rst(~rst_n), // input
.rd_data(rd_data) // output [7:0]

);

endmodule

6、实验现象

MES_OLED模块连接至 PGL50H开发板的 PMOD接口，OLED屏幕上显示“深

圳市小眼睛科技”的字样。

	1.3寸oled屏显示实验说明
	1、实验简介
	2、实验目的
	3、实验使用模块介绍
	4、实验原理
	(1)OLED发光原理
	(2)OLED显示原理

	5、实验代码设计
	6、实验现象

