
 1 / 8

2.键控流水灯实验例程

2.1 MES22GP 开发板简介

MES22GP 扩展底板提供了 8 个用户按键（USER_KEY1～8）和 1 个重加载复位按键，重

加载按键通过一个延时复位芯片连接到 PGL22G 的 RSTN 管脚；8 个用户按键都连接到

PGL22G 的普通 IO 上，按键低电平有效，但按键按下时，IO 上的输入电压为低；当没有按下

按键时，IO 上的输入电压为高电平（详情请查看“MES22GP开发板硬件使用手册”）。

2.2 实验目的

由 USER_KEY1按键输入，切换 USER_LED1~ USER_LED8 的输出效果。

2.3 实验原理

实现框架如下：

（1）顶层实现按键切换 LED的流水灯状态；

（2）需要设计一个输入控制模块及一个输出控制模块；

这个实验带大家将多个模块整合成为一个工程，涉及到的知识点有子模块设计、模块例化；

子模块的设计主要是依据功能定位，确定输入输出，再做具体的设计；

模块例化方式如下：

2.3.1按键控制模块功能

接收按键输入信号。统计按键按下次数，由于流水灯模式是 3 种，计数统计范围是 0～2

KEY_LED

KEY_CTL LED_CTL
KEY

CLK

BTN_DEB

LED[7:0] Control wire

1 module_name #（

2 .PARAM (PARAM_SET) // PARAM为例化模块的常量接口；PARAM_SET为常量赋值内容

3) unint_name(// module_name 为例化module名；unint_name为例化后单元名称

4 .port (signal) // port为例化模块中的管脚；signal为当前模块的信号

5);

 2 / 8

循环，将计数结果传递给 LED控制模块；

根据需求输入信号有：时钟，按键；输出信号有：流水灯控制信号；

内部功能处理：

<1>内部需要对按键信号做消抖处理；

<2>按键触发计数器（计数值输出）改变继而调整流水灯的状态；

Key1
BTN_DEB Counter

ctl
KEY_CTL

2.3.2按键消抖模块

前后抖动时间约为 5～10ms，取按键抖动区间开始标识，持续 10-20ms 后标识归零，在抖

动区间内输出保持，非消抖区间，按键状态输出。

2.3.3LED 控制模块功能

3种流水灯模式有按键传递过来的计数控制切换，每一个 LED的显示状态完整后进入下一

模式初始化。根据需求可得到如下信息：

输入信号：时钟，流水灯模式控制信号； 出信号：8bit位宽的 LED控制信号；

 3 / 8

功能处理注意事项：流水灯状态切换点，不同状态的切换时如何初始化；

2.4 实验源码设计

2.4.1顶层文件源码

1 `timescale 1ns / 1ps

2

3 `define UD #1

4 module key_led_top(

5 input clk,

6 input key,

7 output [7:0] led

8);

9

10 wire [1:0] ctrl;

11

12 key_ctl key_ctl(

13 .clk (clk),//input clk,

14 .key (key),//input key,

15 .ctrl (ctrl)//output [1:0] ctrl

16);

17

18 led u_led(

19 .clk (clk),//input clk,

20 .ctrl (ctrl),//input [1:0] ctrl,

21

22 .led (led) //output[7:0] led

23);

24

25 endmodule

26

 4 / 8

2.4.2按键控制模块

2.4.3按键消抖模块

1 `timescale 1ns / 1ps

2 `define UD #1

3 module key_ctl(

4 input clk,

5 input key,

6

7 output [1:0] ctrl

8);

9

10 wire btn_deb;

11 // 按键消抖

12 btn_deb#(

13 .BTN_WIDTH (4'd1) //parameter BTN_WIDTH = 4'd8

14) U_btn_deb

15 (

16 .clk (clk),//input clk,

17 .btn_in (key),//input [BTN_WIDTH-1:0] btn_in,

18

19 .btn_deb (btn_deb) //output reg [BTN_WIDTH-1:0]btn_deb

20);

21

22 reg btn_deb_1d;

23 always @(posedge clk)

24 begin

25 btn_deb_1d <= `UD btn_deb; //get the btn_deb delay one clock cycle

26 End

27

28 //下降沿获取方式：前一个时钟周期为高电平，当前时钟周期为低电平；

29 // 故而将按键消抖后的信号打一拍（保持上一时钟周期的状态）
30 // ___________
31 // sig |___________
32 // ______________
33 //sig_reg |_______
34 // ___
35 //falling ___________| |_______
36

37 reg [1:0] key_push_cnt=2'd0;

38 always @(posedge clk)

39 begin

40 if(~btn_deb & btn_deb_1d) //get he falling edge of btn_deb

41 begin

42 key_push_cnt <= `UD key_push_cnt + 2'd1;
43 end
44 end

45

46 assign ctrl = key_push_cnt;

47

48 endmodule

49

 5 / 8

1 `timescale 1ns / 1ps

2 `define UD #1

3 module btn_deb_fix#(

4 parameter BTN_WIDTH = 4'd8,

5 parameter BTN_DELAY = 20’h7_ffff

6)

7 (

8 input clk, //

9 input [BTN_WIDTH-1:0] btn_in,

10

11 output reg [BTN_WIDTH-1:0] btn_deb_fix

12);

13 //16'h3ad43;

14 reg [17:0] cnt[BTN_WIDTH-1:0];

15 reg [BTN_WIDTH-1:0] flag;

16

17 reg [BTN_WIDTH-1:0] btn_in_reg;

18 always @(posedge clk)

19 begin

20 btn_in_reg <= `UD btn_in;

21 end

22

23 genvar i;

24 generate

25 begin

26 for(i=0;i<BTN_WIDTH;i=i+1)

27 begin

28 always @(posedge clk)

29 begin

30 if (btn_in_reg[i] ^ btn_in[i]) //取按键边沿开始抖动区间标识

31 flag[i] <= `UD 1'b1;

32 else if (cnt[i]== BTN_DELAY) //持续 20ms 后归零

33 flag[i] <= `UD 1'b0;

34 else

35 flag[i] <= `UD flag[i];

36 end

37

38 always @(posedge clk)

39 begin

40 if(cnt[i]== BTN_DELAY) //计数 20ms 时归零

41 cnt[i] <= `UD 18'd0;

42 else if(flag[i]) //抖动区间有效时计数

43 cnt[i] <= `UD cnt[i] + 1'b1;

44 else //非抖动区间保持 0

45 cnt[i] <= `UD 18'd0;

46 end

47

48 always @(posedge clk)

49 begin

50 if(flag[i]) //抖动区间，消抖输出保持

51 btn_deb_fix[i] <= `UD btn_deb_fix[i];

52 else //非抖动区间，按键状态传递到消抖输出

53 btn_deb_fix[i] <= `UD btn_in[i];

54 end

55 end

56 endgenerate

57 endmodule

 6 / 8

Verilog 中的 generate 语句常用于编写可配置的、可综合的 RTL 的设计结构。它可用于

创建模块的多个实例化，或者有条件的实例化代码块。

我们常用 generate 语句做三件事情。一个是用来构造循环结构，用来多次实例化某个模

块。一个是构造条件 generate 结构，用来在多个块之间最多选择一个代码块，条件 generate

结构包含 if--generate结构和 case--generate形式。还有一个是用来断言。

在 Verilog中，generate 在建模（elaboration）阶段实施，出现预处理之后，正式模拟

仿真之前。因此。generate 结构中的所有表达式都必须是常量表达式，并在建模（elaboration）

时确定。例如，generate 结构可能受参数值的影响，但不受动态变量的影响。

Verilog 中的 generate 块创建了新的作用域和新的层次结构，就像实例化模块一样。因

此在尝试对 generate 块中的信号进行引用时，很容易因此混乱，因此请记住这一点。

（参考来源：知乎作者数字 IC小站，Verilog 中 generate的使用 - 知乎 (zhihu.com)）

https://zhuanlan.zhihu.com/p/107047600

 7 / 8

2.4.4LED 控制模块

1 `timescale 1ns / 1ps

2 `define UD #1

3 module led(

4 input clk,

5 input [1:0] ctrl,

6 output [7:0] led

7);

8

9 reg [24:0] led_light_cnt = 25'd0;

10 reg [7:0] led_status = 8'b1000_0000;

11

12 // time counter

13 always @(posedge clk)

14 begin

15 if(led_light_cnt == 25'd19_999_999)

16 led_light_cnt <= `UD 25'd0;

17 else

18 led_light_cnt <= `UD led_light_cnt + 25'd1;

19 end

20

21 reg [1:0] ctrl_1d; //保存上一个 led状态周期的 ctrl值

22 always @(posedge clk)

23 begin

24 if(led_light_cnt == 25'd19_999_999)

25 ctrl_1d <= ctrl;//此处设计能保证状态切换时，从 0时刻开始下一次流水状态

26 end

27

28 // led status change

29 always @(posedge clk)

30 begin

31 if(led_light_cnt == 25'd19_999_999)//0.5s 周期

32 begin

33 case(ctrl)

34 2'd0 : //从高位到低位的 led流水灯

35 begin

36 if(ctrl_1d != ctrl)

37 led_status <= `UD 8'b1000_0000;

38 else

39 led_status <= `UD {led_status[0],led_status[7:1]};

40 end

41 2'd1 : //隔一亮一交替

42 begin

43 if(ctrl_1d != ctrl)

44 led_status <= `UD 8'b1010_1010;

45 else

46 led_status <= `UD ~led_status;

47 end

48

 8 / 8

2.5 实验现象

每按下一次 KEY1，LED 灯状态切换一次，总共三种 LED模式供循环切换；

LED模式一：从高位到低位的 LED流水灯；

LED模式二：隔一亮一交替点亮；

LED模式三：从高位到低位暗灯流水；

49 2'd2 : //从高位到低位暗灯流水

50 begin

51 if(ctrl_1d != ctrl)

52 led_status <= `UD 8'b0111_1111;

53 else

54 led_status <= `UD {led_status[0],led_status[7:1]};

55 end

56 endcase

57 end

58 end

59

60 assign led = led_status;

61

62 endmodule

63

