
PG2T70H 开发板实验指导手册
开发手册版本：v1.1

时间：2025-07-31

公司：深圳市小眼睛科技有限公司

客服微信：17665247134

qq 群：808770961

淘宝店铺：小眼睛半导体

邮箱：support@meyesemi.com

公司网址：www.meyesemi.com

微信公众号： 抖音： 视频号：

mailto:support@meyesemi.com
http://www.meyesemi.com

目录

1. LED 流水灯实验例程 ...4

1.1 PG2T70H 开发板简介 ..4

1.2 实验目的 ... 4

1.3 实验原理 ... 4

1.4 实验源码设计 ... 6

1.5 实验现象 .. 10

2. 键控流水灯实验例程 ... 11

2.1 PG2T70H 开发板简介 ...11

2.2 实验目的 .. 11

2.3 实验原理 .. 11

2.3.2 按键消抖模块 .. 12

2.4 实验源码设计 .. 13

2.5 实验现象 ...18

3.串口收发实验例程 .. 19

3.1PG2T70H 开发板简介 ..19

3.2 实验要求...19

3.3 实验原理 ...19

3.4 实验源码设计 ...22

3.5 实验现象 ...39

4_5.HDMI 实验例程说明 ..43

4_5.1PG2T70H 开发板简介 ..43

4_5.2 实验目的 ...43

4_5.3 实验原理 ...43

4_5.4 实验源码设计 ...49

4_5.5 实验现象 ...50

6.DDR3 读写实验例程 ..52

6.1PG2T70H 开发板简介 ..52

6.2 实验要求 ...52

6.3DDR3 控制器简介 ...52

6.4 实验设计 ...53

6.5 实验现象 ...59

7_8.光纤通信测试实验例程 .. 60

7_8.1PG2T70H 开发板简介 ..60

7_8.2 实验要求 ...60

7_8.3HSST 简介 ...60

7_8.4 实验设计 ...61

7_8.5 实验现象 ...66

9.以太网传输实验例程 .. 67

9.1 实验目的 ...67

9.2 实验原理 ...67

9.3 工程说明 ...67

9.5 实验现象 ... 110

10.PCIE 通信测试实验例程 ..111

10.1 实验目的 ...111

10.2 实验原理 ...111

10.3 工程说明 ...114

10.4 实验现象 ...119

1. LED流水灯实验例程

1.1 PG2T70H开发板简介

PG2T70H开发板有 8个用户 LED灯（LED1～8），FPGA 输出高电平时对

应的 LED灯亮灯（详情请查看“PG2T70H开发板硬件使用手册”）。

1.2 实验目的

控制 8个 LED灯按顺序依次点亮和熄灭。

1.3 实验原理

通常的时，分，秒的计时进位大家应该不陌生；

1小时=60分钟=3600秒，当时针转动 1小时，秒针跳动 3600次；

在数字电路中的时钟信号也是有固定的节奏的，这种节奏的开始到结束的时间,

我们通常称之为周期（T）。

在数字系统中通常关注到时钟的频率,那频率与周期的关系如下：

PG2T70H板卡上单端时钟有一个 50MHz 和一个 27MHz 的晶振提供时钟给

到 PG2T70H;

实验分析:

控制 LED 亮灭需要控制 IO 输出的高低电平即可(高电平点亮,低电平熄灭),

原理图如下：

控制 LED依次 0.5s亮,0.5s灭,需要控制 IO依次输出 0.5s高电平,0.5s低电平

周期变化,

如下图波形:

若使用 50MHz外部输入时钟，时钟周期为 20ns（在 verilog设计中的计数器

的计时原理基本上是一致的，确认输入时钟周期和目标计时时间后可得到计数器

的计数值到达多少后可得到计时宽度）;

IO输出状态只有两种：1或 0；我们可以使用一个计数器，计数满 25000000

个时钟周期时变化不同 LED点亮。

1.4 实验源码设计

1.4.1 文件头设计

在 module之前添加文件头，文件头中包含信息有：公司，作者，时间，设

计名，工程名，模块名，目标器件，EDA工具(版本)，模块描述，版本描述（修

改描述）等信息；以及仿真时间单位定义；

1. `timescale 1ns / 1ps
2. ///

/////////////////

3. // Company:Meyesemi
4. // Engineer: Will
5. //
6. // Create Date: 2023-01-29 20:31
7. // Design Name:
8. // Module Name:
9. // Project Name:
10. // Target Devices: Pango
11. // Tool Versions:
12. // Description:
13. //
14. // Dependencies:
15. //
16. // Revision:
17. // Revision 1.0 - File Created
18. // Additional Comments:
19. //
20. ///

/////////////////
21.

22. `define UD #1

`timescale1ns/1ps表示仿真精度是 1ns，显示精度是 1ps；

`defineUD#1定义 UD表示#1；#1仅仿真有效，表示延时一个仿真精度，结

合上一条语句表示延时 1ns；

1.4.2 设计module

1. module led_test(
2. input clk,

3. input rstn,
4.

5. output [7:0] led
6.);

此段代码是标准的 module创建的模型，module创建时需要确认输入输出信

号并定义好位宽，之后在对 module进行具体的逻辑设计；管脚与管脚之间用“,”

隔开，最后一个管脚不用间隔符号；

创建 module时需要定义输入输出信号;本实验输入时钟和复位即可，输出是

控制 LED的亮灭，MES50HP板卡上共有 8个 LED，故而输出 8bit位宽的信号；

单 个 状 态 计 数 25_000_000 ， 即

24_999_999=25’b1_0111_1101_0111_1000_0011_1111;所以计数器的位宽为 25 位

即可，此处请结合数字电路中的同步计数器的工作原理分析；

1. //time counter
2. always @(posedge clk)
3. begin
4. if(!rstn)
5. led_light_cnt <= `UD 26'd0;
6. else if(led_light_cnt == 26'd24_999_999)
7. led_light_cnt <= `UD 26'd0;
8. else
9. led_light_cnt <= `UD led_light_cnt + 26'd1;
10. end

当计数器计数到 25'd24_999_999 时，计数过程包含了从 0～26'd2499_9999

的时钟周期，故而总时长时 25’d25_000_000×Tclk；硬件输入时钟为 50MHz，所

以此计数器的计数周期是 0.5s；

在指定的时间刻度上对 LED的状态进行变更，以达到控制 LED依次亮灭的

目的；

led_light_cnt的计时周期为 0.5s，故在 led_light_cnt上取一个点来变更 LED

的显示状态即可完成每隔 0.5sLED显示发生变化；由于 LED亮和灭只有两个状

态，在赋值处理上将寄存器进行移位操作；

1. //led status change
2. always @(posedge clk)
3. begin
4. if(!rstn)
5. led_status <= `UD 8'b0000_0001;
6. else if(led_light_cnt == 25'd24_999_999)

7. led_status <= `UD {led_status[6:0],led_status[7]};
8. end
9.

10. assign led = led_status;

1.4.3 完整的Module（不含注释）

1. module led_test(
2. input clk,
3. input rstn,
4.

5. output [7:0] led
6.);
7.

8.

9. //===
===============

10. //reg and wire
11.

12. reg [25:0] led_light_cnt = 26'd0 ;
13. reg [7:0] led_status = 8'b0000_0001 ;
14.

15. //time counter
16. always @(posedge clk)
17. begin
18. if(!rstn)
19. led_light_cnt <= `UD 26'd0;
20. else if(led_light_cnt == 26'd24_999_999)
21. led_light_cnt <= `UD 26'd0;
22. else
23. led_light_cnt <= `UD led_light_cnt + 26'd1;
24. end
25.

26. //led status change
27. always @(posedge clk)
28. begin
29. if(!rstn)
30. led_status <= `UD 8'b0000_0001;
31. else if(led_light_cnt == 25'd24_999_999)
32. led_status <= `UD {led_status[6:0],led_status[7]};
33. end
34.

35. assign led = led_status;
36.

37. endmodule

1.4.4 硬件管脚分配

PG2T70H的 LED和 CLK与 FPGA的 IO 连接部分的原理图如下，详情可查

看硬件使用手册或原理图：

信号 FPGA Pin

LED1 U16

LED2 T16

LED3 R16

LED4 Y16

LED5 W16

LED6 Y14

LED7 W14

LED8 W15

复位设计是低电平有效，PG2T70H开发板提供了 8个用户按键（K1～8），

按键低电平有效，但按键按下时，IO 上的输入电压为低；当没有按下按键时，

IO上的输入电压为高电平；选择任一个用户按键作为复位输入即可。

1.5 实验现象

8颗 LED灯按照设定的顺序和时间依次点亮和熄灭。

2.键控流水灯实验例程

2.1 PG2T70H开发板简介

PG2T70H开发板有 8个用户 LED灯（LED1～8），FPGA 输出高电平时对

应的 LED灯亮灯（详情请查看“PG2T70H开发板硬件使用手册”）。

2.2 实验目的

由 USER_BUTTON1 按键输入，切换 USER_LED1~USER_LED8 的输出效

果。

2.3 实验原理

实现框架如下：

（1）顶层实现按键切换 LED的流水灯状态；

（2）需要设计一个输入控制模块及一个输出控制模块；

这个实验带大家将多个模块整合成为一个工程，涉及到的知识点有子模块设

计、模块例化；子模块的设计主要是依据功能定位，确定输入输出，再做具体的

设计；

模块例化方式如下：

1. module_name # (
2. .PARAM (PARAM_SET) // PARAM 为例化模

块的常量接口；PARAM_SET 为常量赋值内容

3.) unint_name(// modul
e_name 为例化 module名；unint_name 为例化后单元名称

4. .port (signal) // port
为例化模块中的管脚； signal为当前模块的信号

5.);

2.3.1 按键控制模块功能

接收按键输入信号。统计按键按下次数，由于流水灯模式是 3种，计数统计

范围是 0～2循环，将计数结果传递给 LED控制模块；

根据需求输入信号有：时钟，按键；输出信号有：流水灯控制信号；

内部功能处理：

<1>内部需要对按键信号做消抖处理；

<2>按键触发计数器（计数值输出）改变继而调整流水灯的状态；

2.3.2 按键消抖模块

前后抖动时间约为 5～10ms，取按键抖动区间开始标识，持续 10-20ms后标

识归零，在抖动区间内输出保持，非消抖区间，按键状态输出。

2.3.3 LED控制模块功能

3种流水灯模式有按键传递过来的计数控制切换，每一个 LED 的显示状态

完整后进入下一模式初始化。根据需求可得到如下信息：

输入信号：时钟，流水灯模式控制信号；出信号：8bit位宽的 LED 控制信

号；功能处理注意事项：流水灯状态切换点，不同状态的切换时如何初始化；

2.4 实验源码设计

2.4.1 顶层文件源码

1. `timescale 1ns / 1ps
2. `define UD #1
3. module key_led_top(
4. input clk,//50MHz
5. input key,
6.

7. output [7:0] led
8.);
9.

10. wire [1:0] ctrl;
11.

12. key_ctl key_ctl(
13. .clk (clk),//input clk,
14. .key (key),//input key,
15.

16. .ctrl (ctrl)//output [1:0] ctrl
17.);
18.

19. led u_led(
20. .clk (clk),//input clk,
21. .ctrl (ctrl),//input [1:0] ctrl,
22.

23. .led (led) //output [7:0] led
24.);
25.

26. endmodule

2.4.2按键控制模块

1. `timescale 1ns / 1ps
2. `define UD #1
3. module key_ctl(
4. input clk,
5. input key,
6.

7. output [1:0] ctrl
8.);
9.

10. wire btn_deb;
11. // °´¼üÏû¶¶
12. btn_deb_fix#(
13. .BTN_WIDTH (4'd1), //parameter

BTN_WIDTH = 4'd8

14. .BTN_DELAY (20'h7_ffff)
15.) u_btn_deb
16. (
17. .clk (clk),//input

clk,

18. .btn_in (key),//input [BTN_WIDTH-1:0]
btn_in,

19.

20. .btn_deb_fix (btn_deb) //output reg [BTN_WIDTH-1:0]
btn_deb

21.);
22.

23. reg btn_deb_1d;
24. always @(posedge clk)
25. begin
26. btn_deb_1d <= `UD btn_deb;
27. end
28.

29. reg [1:0] key_push_cnt=2'd0;
30. always @(posedge clk)
31. begin
32. if(~btn_deb & btn_deb_1d)
33. begin
34. if(key_push_cnt == 2'd2)
35. key_push_cnt <= `UD 2'd0;
36. else
37. key_push_cnt <= `UD key_push_cnt + 2'd1;

38. end
39. end
40.

41. assign ctrl = key_push_cnt;
42.

43. endmodule

2.4.3按键消抖模块

1. `timescale 1ns / 1ps
2. `define UD #1
3. module btn_deb_fix#(
4. parameter BTN_WIDTH = 4'd8,
5. parameter BTN_DELAY = 20'h7_ffff
6.)
7. (
8. input clk, //
9. input [BTN_WIDTH-1:0] btn_in,
10.

11. output reg [BTN_WIDTH-1:0] btn_deb_fix
12.);
13.

14. //16'h3ad43;
15. reg [19:0] cnt[BTN_WIDTH-1:0];
16. reg [BTN_WIDTH-1:0] flag;
17.

18. reg [BTN_WIDTH-1:0] btn_in_reg;
19.

20. always @(posedge clk)
21. begin
22. btn_in_reg <= `UD btn_in;
23. end
24.

25. genvar i;
26. generate
27. for(i=0;i<BTN_WIDTH;i=i+1)
28. begin
29. always @(posedge clk)
30. begin
31. if (btn_in_reg[i] ^ btn_in[i]) //取按键边沿开始抖动区

间标识

32. flag[i] <= `UD 1'b1;
33. else if (cnt[i]==BTN_DELAY) //持续 10ms-20ms 后归零

34. flag[i] <= `UD 1'b0;

35. else
36. flag[i] <= `UD flag[i];
37. end
38.

39. always @(posedge clk)
40. begin
41. if(cnt[i]==BTN_DELAY) //计数 10ms-20ms 时归零

42. cnt[i] <= `UD 20'd0;
43. else if(flag[i]) //抖动区间有效时计数

44. cnt[i] <= `UD cnt[i] + 1'b1;
45. else //非抖动区间保持 0
46. cnt[i] <= `UD 20'd0;
47. end
48.

49. always @(posedge clk)
50. begin
51. if(flag[i]) //抖动区间，消抖输出保持

52. btn_deb_fix[i] <= `UD btn_deb_fix[i];
53. else //非抖动区间，按键状态传递

到消抖输出

54. btn_deb_fix[i] <= `UD btn_in[i];
55. end
56. end
57. endgenerate
58.

59. endmodule

2.4.4LED控制模块

1. `timescale 1ns / 1ps
2. `define UD #1
3. module led(
4. input clk,//50MHz
5. input [1:0] ctrl,
6.

7. output [7:0] led
8.);
9.

10. reg [24:0] led_light_cnt = 25'd0;
11. reg [7:0] led_status = 8'b1000_0000;
12.

13. // time counter
14. always @(posedge clk)
15. begin

16. if(led_light_cnt == 25'd24_999_999)
17. led_light_cnt <= `UD 25'd0;
18. else
19. led_light_cnt <= `UD led_light_cnt + 25'd1;
20. end
21.

22. reg [1:0] ctrl_1d=0; //保存上一个 led 状态周期的 ctrl值

23. always @(posedge clk)
24. begin
25. if(led_light_cnt == 25'd0)
26. ctrl_1d <= ctrl;
27. end
28.

29. // led status change
30. always @(posedge clk)
31. begin
32. if(led_light_cnt == 25'd24_999_999)//0.5s 周期

33. begin
34. case(ctrl)
35. 2'd0 : //从高位到低位的 led流水灯

36. begin
37. if(ctrl_1d != ctrl)
38. led_status <= `UD 8'b1000_0000;
39. else
40. led_status <= `UD {led_status[0],led_stat

us[7:1]};

41. end
42. 2'd1 : //隔一亮一交替

43. begin
44. if(ctrl_1d != ctrl)
45. led_status <= `UD 8'b1010_1010;
46. else
47. led_status <= `UD ~led_status;
48. end
49. 2'd2 : //从高位到低位暗灯流水

50. begin
51. if(ctrl_1d != ctrl)
52. led_status <= `UD 8'b0111_1111;
53. else
54. led_status <= `UD {led_status[0],led_stat

us[7:1]};

55. end
56. endcase
57. end

58. end
59.

60. assign led = led_status;
61.

62. endmodule

2.5实验现象

每按下一次 KEY1，LED灯状态切换一次，总共三种 LED模式供循环切换；

LED模式一：从高位到低位的 LED流水灯；LED模式二：隔一亮一交替点

亮；

LED模式三：从高位到低位暗灯流水；

3.串口收发实验例程

3.1PG2T70H开发板简介

PG2T70H 开发板集成了一路 USB 转串口模块，采用的 USB-UART 芯片

CP2102,USB接口采用 USBTypeC接口，可以用一根 USBTypeC线连接到 PC的

USB口进行串口数据通信（详情请查看“PG2T70H开发板硬件使用手册”）。

3.2实验要求

串口通信时波特率设置为 115200bps，数据格式为 1位起始位、8位数据位、

无校验位、 1 位结束位。板子 1s 向串口助手发送一次十进制显示的

“www.meyesemi.com”，通过串口助手向板子以十六进制形式发送数字（00~FF），

LED以二进制显示亮起。

3.3实验原理

3.3.1串口原理

从下图我们可以看到标准串口接口是 9根线，具体含义如下：

数据线：

TXD（pin3）：串口数据输出(TransmitData)RXD（pin2）：串口数据输入

(ReceiveData)

握手：

RTS（pin7）：发送数据请求(RequesttoSend)CTS（pin8）：清除发送(CleartoSend)

DSR（pin6）：数据发送就绪(DataSendReady)

DCD（pin1）：数据载波检测(DataCarrierDetect)

DTR（pin4）：数据终端就绪(DataTerminalReady)

地线：

GND（pin5）：地线

其它：

RI（pin9）：铃声指示

通常我们用 RS232串口仅用到了 9根传输线中的三根：TXD，RXD，GND。

但是对于数据传输，双方必须对数据传输采用使用相同的波特率，约定同样的传

输模式（传输架构，握手条件等）。尽管这种方法对于大多数应用已经足够，但

是对于接收方过载的情况这种使用受到限制。

RS232的串口连接方式：

串口传输协议如下：

起始位：先发出一个逻辑”0”信号，表示传输字符的开始。

数据位：可以是 5~8位逻辑”0”或”1”。如 ASCII 码（7位），扩展 BCD 码

（8位）。

校验位：数据位加上这一位后，使得“1”的位数应为偶数(偶校验)或奇数(奇

校验)。

停止位：它是一个字符数据的结束标志。可以是 1位、1.5 位、2位的高电

平。

空闲位：处于逻辑“1”状态，表示当前线路上没有资料传送。

波特率：uart中的波特率就可以认为是比特率，即每秒传输的位数(bit)。一

般选波特率都会有 9600,19200,115200等选项。其实意思就是每秒传输这么多个

比特位数(bit)。

引入波特率的概念后可得到串口的传输节奏如下：

3.3.2串口传输步骤

串口发送流程：

串口接收流程：

3.3.3串口发送字符

从前面串口协议中可以了解到串口每次传输可以以有 5～8bit数据，在计算

机中字符通常用 ASCII码（7bit）表示，所以字符的发送可以用 ASCII码发送。

查询 ASCII码表格可得到：“www.meyesemi.com”用到的字符对应 ASCII码；

3.4实验源码设计

从实验目的分析可将实验做如下划分：

从原理上分析波特率的计算是一个计数器，发射和接收可复用，我们在设计

时为保持 TX，或 RX的完整性，故将波特周期计数器集成在各自模块内部；

上述分析仅仅搭建好MES50HP的与 PC通信的桥梁 UART，传输的数据没

有体现。故而需要增加发送数据模块，与接收数据模块；

3.4.1串口发送模块设计

目 标 ： 接 收 到 一 个 发 送 命 令 信 号 时 ， 将 data[7:0]-> 依 次 发 出

{start,data[0:7],stop}共 10bit数据（无校验位，停止位 1bit）；

有两种方法可以将一个并行数据串行化；

方法一：通过 bit计数与 baud计数控制移位输出；

1. // transmit bit
2. always@(posedge clk)
3. begin
4. if(!rstn)
5. txd <= `UD 1'b1;
6. else
7. begin
8. if(trans_en)
9. Begin
10. // 将开始标志和停止标志以及传输数据集成放到 trans_data 中可用下方语

句

11. // txd <= `UD trans_data[trans_bit];
12. // 单 bit 控制用下方语句

13. case(trans_bit)
14. 4'h0 :txd <= `UD 1'b0;
15. 4'h1 :txd <= `UD tx_data_reg[0];
16. 4'h2 :txd <= `UD tx_data_reg[1];
17. 4'h3 :txd <= `UD tx_data_reg[2];
18. 4'h4 :txd <= `UD tx_data_reg[3];
19. 4'h5 :txd <= `UD tx_data_reg[4];
20. 4'h6 :txd <= `UD tx_data_reg[5];
21. 4'h7 :txd <= `UD tx_data_reg[6];
22. 4'h8 :txd <= `UD tx_data_reg[7];
23. 4'h9 :txd <= `UD 1'b1;
24. default :txd <= `UD 1'b1;

25. endcase
26. end
27. else
28. txd <= `UD 1'b1;
29. end
30. end

方法二：通过 bit计数与 baud计数控制状态跳转，在状态机中输出；

1. // logical ouput 状态机输出

2. always @ (posedge clk)
3. begin
4. if(tx_en)
5. begin
6. case(tx_state)
7. IDLE : uart_tx <= `UD 1'h1; //空闲状态输出高电

平

8. SEND_START : uart_tx <= `UD 1'h0; //start 状态发送一

个波特周期的低电平

9. SEND_DATA : //发送状态每个波特

周期发送一个 bit；
10. begin
11. case(tx_bit_cnt)
12. 3'h0 : uart_tx <= `UD trans_data[0];
13. 3'h1 : uart_tx <= `UD trans_data[1];
14. 3'h2 : uart_tx <= `UD trans_data[2];
15. 3'h3 : uart_tx <= `UD trans_data[3];
16. 3'h4 : uart_tx <= `UD trans_data[4];
17. 3'h5 : uart_tx <= `UD trans_data[5];
18. 3'h6 : uart_tx <= `UD trans_data[6];
19. 3'h7 : uart_tx <= `UD trans_data[7];
20. default: uart_tx <= `UD 1'h1;
21. endcase
22. end
23. SEND_STOP : uart_tx <= `UD 1'h1; //发送停止状态 输

出 1 个波特周期高电平

24. default : uart_tx <= `UD 1'h1; // 其他状态默认与空

闲状态一致，保持高电平输出

25. endcase
26. end
27. else
28. uart_tx <= `UD 1'h1;
29. end 30

这里笔者采用方法二，完整 module设计如下：

1. `timescale 1ns / 1ps

2. `define UD #1
3.

4. module uart_tx #(
5. parameter BPS_NUM = 16'd434
6. // 设 置 波 特 率 为 4800 时 ， bit 位 宽 时 钟 周 期 个

数:50MHz set 10417 40MHz set 8333
7. // 设 置 波 特 率 为 9600 时 ， bit 位 宽 时 钟 周 期 个

数:50MHz set 5208 40MHz set 4167
8. // 设 置 波 特 率 为 115200 时 ， bit 位 宽 时 钟 周 期 个

数:50MHz set 434 40MHz set 347 12M set 104
9.)
10. (
11. input clk, // clock

时钟信号

12. input [7:0] tx_data, // uart tx data signal byte；
等待发送的字节数据

13. input tx_pluse, // uart tx enable signal,rising i
s active; 发送模块发送触发信号

14.

15. output reg uart_tx, // uart tx transmit data line
发送模块串口发送信号线

16. output tx_busy // uart tx module work states,hig
h is busy;发送模块忙状态指示

17.);
18.

19. //===
===============

20. //wire and reg in the module
21. //===

===============

22. reg tx_pluse_reg =0;
23.

24. reg [2:0] tx_bit_cnt=0; //the bits number has transmited.
25.

26. reg [2:0] tx_state=0; //current state of tx state machin
e.

27. reg [2:0] tx_state_n=0; //next state of tx state machine.
28.

29. reg [3:0] pluse_delay_cnt=0;
30. reg tx_en = 0;
31.

32. // uart tx state machine's state
33. localparam IDLE = 4'h0; //tx state machine's state.空闲状

态

34. localparam SEND_START = 4'h1; //tx state machine's state.发送

start状态

35. localparam SEND_DATA = 4'h2; //tx state machine's state.发送

数据状态

36. localparam SEND_STOP = 4'h3; //tx state machine's state.发送

stop状态

37. localparam SEND_END = 4'h4; //tx state machine's state.发送

结束状态

38.

39. // uart bps set the clk's frequency is 50MHz
40. reg [15:0] clk_div_cnt=0; //count for division the clock.
41.

42. //===
===============

43. //logic
44. //===

===============

45. assign tx_busy = (tx_state != IDLE);
46. //some control single.
47.

48. always @(posedge clk)
49. begin
50. tx_pluse_reg <= `UD tx_pluse;
51. end
52.

53. // uart 模块发送工作使能标志信号

54. always @(posedge clk)
55. begin
56. if(~tx_pluse_reg & tx_pluse)
57. tx_en <= 1'b1;
58. else if(tx_state == SEND_END)
59. tx_en <= 1'b0;
60. end
61.

62. //division the clock to satisfy baud rate.波特周期计数器

63. always @ (posedge clk)
64. begin
65. if(clk_div_cnt == BPS_NUM || (~tx_pluse_reg & tx_pluse))
66. clk_div_cnt <= `UD 16'h0;
67. else
68. clk_div_cnt <= `UD clk_div_cnt + 16'h1;
69. end
70.

71. //count the number has transmited.发送数据状态中，发送 bit 位计数，

以波特周期累加

72. always @ (posedge clk)
73. begin
74. if(!tx_en)
75. tx_bit_cnt <= `UD 3'h0;
76. else if((tx_bit_cnt == 3'h7) && (clk_div_cnt == BPS_NUM))
77. tx_bit_cnt <= `UD 3'h0;
78. else if((tx_state == SEND_DATA) && (clk_div_cnt == BPS_NU

M))

79. tx_bit_cnt <= `UD tx_bit_cnt + 3'h1;
80. else
81. tx_bit_cnt <= `UD tx_bit_cnt;
82. end
83.

84. //===
===============

85. //transmitter state machine
86. //===

===============

87.

88. // state change 状态跳转

89. always @(posedge clk)
90. begin
91. tx_state <= tx_state_n;
92. end
93.

94. // state change condition 状态跳转条件及规律

95. always @ (*)
96. begin
97. case(tx_state)
98. IDLE :
99. begin
100. if(~tx_pluse_reg & tx_pluse) //触发发送做 16个时钟周

期延时后跳转到，发送 start 状态

101. tx_state_n = SEND_START;
102. else
103. tx_state_n = tx_state;
104. end
105. SEND_START :
106. begin
107. if(clk_div_cnt == BPS_NUM) //发送一个波

特周期的低电平后进入，发送数据状态

108. tx_state_n = SEND_DATA;

109. else
110. tx_state_n = tx_state;
111. end
112. SEND_DATA :
113. begin
114. if(tx_bit_cnt == 3'h7 && clk_div_cnt == BPS_NUM)

//计时 8个波特周期后（发送了 8bit 数据），跳转到发送 stop 状态

115. tx_state_n = SEND_STOP;
116. else
117. tx_state_n = tx_state;
118. end
119. SEND_STOP :
120. begin
121. if(clk_div_cnt == BPS_NUM) //设置停止位

宽为 1个波特周期，计数发送一个波特周期的高电平，之后跳转到发送结束状态

122. tx_state_n = SEND_END;
123. else
124. tx_state_n = tx_state;
125. end
126. SEND_END : tx_state_n = IDLE;
127. default : tx_state_n = IDLE;
128. endcase
129. end
130.

131. // logical ouput 状态机输出

132. always @ (posedge clk)
133. begin
134. if(tx_en)
135. begin
136. case(tx_state)
137. IDLE : uart_tx <= `UD 1'h1; //空

闲状态输出高电平

138. SEND_START : uart_tx <= `UD 1'h0; //st
art状态发送一个波特周期的低电平

139. SEND_DATA : //发
送状态每个波特周期发送一个 bit；

140. begin
141. case(tx_bit_cnt)
142. 3'h0 : uart_tx <= `UD tx_data[0];
143. 3'h1 : uart_tx <= `UD tx_data[1];
144. 3'h2 : uart_tx <= `UD tx_data[2];
145. 3'h3 : uart_tx <= `UD tx_data[3];
146. 3'h4 : uart_tx <= `UD tx_data[4];
147. 3'h5 : uart_tx <= `UD tx_data[5];

148. 3'h6 : uart_tx <= `UD tx_data[6];
149. 3'h7 : uart_tx <= `UD tx_data[7];
150. default: uart_tx <= `UD 1'h1;
151. endcase
152. end
153. SEND_STOP : uart_tx <= `UD 1'h1; //发送

停止状态 输出 1个波特周期高电平

154. default : uart_tx <= `UD 1'h1; // 其

他状态默认与空闲状态一致，保持高电平输出

155. endcase
156. end
157. else
158. uart_tx <= `UD 1'h1;
159. end
160.

161. endmodule
162.

3.4.2串口接收模块设计

串口接收模块是发射模块的逆过程，设计思路区别不大，但是有如下几点需

要注意：

1.接收开始信号，当 rx下降沿到来后保持几个时钟周期的低电平，表明进入

接收 start；

2.接收数据提取位置，前面讲发射的时候都是在波特周期开始的位置变更数

据，接收数据提取时需要在 rx稳定时刻取数，去波特周期的中间位置取数；

3.最终输出数据锁存，在最后 1bit存入寄存器后需要对接收数据锁存，并在

之后需要给出数据使能信号，表示输出数据有效；

Module设计如下：

1. `timescale 1ns / 1ps
2. `define UD #1
3.

4. module uart_rx # (
5. parameter BPS_NUM = 16'd434
6. // 设置波特率为 4800时， bit位宽时钟周期个

数:50MHz set 10417 40MHz set 8333
7. // 设置波特率为 9600时， bit位宽时钟周期个

数:50MHz set 5208 40MHz set 4167

8. // 设置波特率为 115200 时，bit位宽时钟周期个

数:50MHz set 434 40MHz set 347
9.)
10. (
11. //input ports
12. input clk,
13. input uart_rx,
14.

15. //output ports
16. output reg [7:0] rx_data,
17. output reg rx_en,
18. output rx_finish
19.);
20.

21. // uart rx state machine's state
22. localparam IDLE = 4'h0; //空闲状态，等待开始信号到

来.
23. localparam RECEIV_START = 4'h1; //接收 Uart 开始信号，低电平

一个波特周期.
24. localparam RECEIV_DATA = 4'h2; //接收 Uart 传输数据信号，此

工程定义传输 8bit，每个波特周期中间位置取值，8个周期后跳转到 stop 状态.
25. localparam RECEIV_STOP = 4'h3; //停止状态数据线是高电平，与

空闲状态是一致的按照协议标准需要等待一个停止位周期再做状态跳转.
26. localparam RECEIV_END = 4'h4; //结束中转状态.
27.

28. //===
===============

29. //wire and reg in the module
30. //===

===============

31. reg [2:0] rx_state=0; //current state of tx s
tate machine. 当前状态

32. reg [2:0] rx_state_n=0; //next state of tx stat
e machine. 下一个状态

33. reg [7:0] rx_data_reg; //
接收数据缓冲寄存器

34. reg uart_rx_1d; //save uart_rx one cycl
e. 保存 uart_rx一个时钟周期

35. reg uart_rx_2d; //save uart_rx one cycl
e.保存 uart_rx 前两个时钟周期

36. wire start; //active when start a b
yte receive. 检测到 start 信号标志

37. reg [15:0] clk_div_cnt; //count for division th
e clock. 波特周期计数器

38.

39. //===
===============

40. //logic
41. //===

===============

42.

43. //some control single.
44. always @ (posedge clk)
45. begin
46. uart_rx_1d <= `UD uart_rx;
47. uart_rx_2d <= `UD uart_rx_1d;
48. end
49.

50. assign start = (!uart_rx) && (uart_rx_1d || uart_rx_2d);
51. assign rx_finish = (rx_state == RECEIV_END);
52.

53.

54. //division the clock to satisfy baud rate.波特周期计数器

55. always @ (posedge clk)
56. begin
57. if(rx_state == IDLE || clk_div_cnt == BPS_NUM)
58. clk_div_cnt <= `UD 16'h0;
59. else
60. clk_div_cnt <= `UD clk_div_cnt + 16'h1;
61. end
62.

63. // receive bit data numbers
64. //在接收数据状态中，接收的 bit 位计数，每一个波特周期计数加 1
65. reg [2:0] rx_bit_cnt=0; //the bits number has tran

smited.

66. always @ (posedge clk)
67. begin
68. if(rx_state == IDLE)
69. rx_bit_cnt <= `UD 3'h0;
70. else if((rx_bit_cnt == 3'h7) && (clk_div_cnt == BPS_NUM))
71. rx_bit_cnt <= `UD 3'h0;
72. else if((rx_state == RECEIV_DATA) && (clk_div_cnt == BPS_

NUM))

73. rx_bit_cnt <= `UD rx_bit_cnt + 3'h1;
74. else
75. rx_bit_cnt <= `UD rx_bit_cnt;
76. end
77.

78. //===
===========

79. //receive state machine
80. //===

===========
81. //状态机状态跳转

82. always @(posedge clk)
83. begin
84. rx_state <= rx_state_n;
85. end
86.

87. //状态机状态跳转条件及跳转规律

88. always @ (*)
89. begin
90. case(rx_state)
91. IDLE :
92. begin
93. if(start) //监测

到 start信号到来，下一状态跳转到 start状态

94. rx_state_n = RECEIV_START;
95. else
96. rx_state_n = rx_state;
97. end
98. RECEIV_START :
99. begin
100. if(clk_div_cnt == BPS_NUM) //

已完成接收 start标志信号

101. rx_state_n = RECEIV_DATA;
102. else
103. rx_state_n = rx_state;
104. end
105. RECEIV_DATA :
106. begin
107. if(rx_bit_cnt == 3'h7 && clk_div_cnt == BPS_NUM) /

/已完成 8bit数据的传输

108. rx_state_n = RECEIV_STOP;
109. else
110. rx_state_n = rx_state;
111. end
112. RECEIV_STOP :
113. begin
114. if(clk_div_cnt == BPS_NUM) /

/已完成接收 stop标志信号

115. rx_state_n = RECEIV_END;

116. else
117. rx_state_n = rx_state;
118. end
119. RECEIV_END :
120. begin
121. if(!uart_rx_1d) /

/数据线重新被拉低，表示新数据传输又发送 start标志信号，需要跳转到 start
状态

122. rx_state_n = RECEIV_START;
123. else /

/没有其他状况出现时，回到空闲状态，等待 start信号的到来

124. rx_state_n = IDLE;
125. end
126. default : rx_state_n = IDLE;
127. endcase
128. end
129.

130. // 状态机输出

131. always @ (posedge clk)
132. begin
133. case(rx_state)
134. IDLE ,
135. RECEIV_START : //在空闲

和 start状态时将接收数据缓冲寄存器和数据使能置位；

136. begin
137. rx_en <= `UD 1'b0;
138. rx_data_reg <= `UD 8'h0;
139. end
140. RECEIV_DATA :
141. begin
142. if(clk_div_cnt == BPS_NUM[15:1]) //在一个

波特周期的中间位置取数据线上传输的数据；

143. rx_data_reg <= `UD {uart_rx , rx_data_reg[7:
1]}; //以循环右移的方式将 uart_rx数据填入缓冲寄存器的最高位（Uart 传输

低位在前，最后一个 bit刚好是最高位）

144. end
145. RECEIV_STOP :
146. begin
147. rx_en <= `UD 1'b1; // 输出使

能信号，表示最新的数据输出有效

148. rx_data <= `UD rx_data_reg; // 将缓冲

寄存器的值赋值给输出寄存器

149. end
150. RECEIV_END :

151. begin
152. rx_data_reg <= `UD 8'h0;
153. end
154. default: rx_en <= `UD 1'b0;
155. endcase
156. end
157.

158. endmodule
159.

160.

161.

162.

3.4.3串口发送控制模块设计

目标：产生 1S间隔的触发信号并输出第一个发送字节，busy的下降沿时输

出下一个字节；

Module如下：

1. `timescale 1ns / 1ps
2. `define UD #1
3. module uart_data_gen(
4. input clk,
5. input [7:0] read_data,
6. input tx_busy,
7. input [7:0] write_max_num,
8. output reg [7:0] write_data,
9. output reg write_en
10.);
11.

12. // set every second send a string,"====HELLO WORLD==="
13. // 设置约每秒发送一个字符串

14. reg [25:0] time_cnt=0;
15. reg [7:0] data_num;
16. always @(posedge clk)
17. begin
18. time_cnt <= `UD time_cnt + 26'd1;
19. end
20.

21. // 设置串口发射工作区间

22. reg work_en=0;
23. reg work_en_1d=0;
24. always @(posedge clk)

25. begin
26. if(time_cnt == 26'd2048)
27. work_en <= `UD 1'b1;
28. else if(data_num == write_max_num-1'b1)
29. work_en <= `UD 1'b0;
30. end
31.

32. always @(posedge clk)
33. begin
34. work_en_1d <= `UD work_en;
35. end
36.

37. // get the tx_busy‘s falling edge 获取 tx_busy 的下降沿

38. reg tx_busy_reg=0;
39. wire tx_busy_f;
40. always @ (posedge clk) tx_busy_reg <= `UD tx_busy;
41.

42. assign tx_busy_f = (!tx_busy) && (tx_busy_reg);
43.

44. // 串口发射数据触发信号

45. reg write_pluse;
46. always @ (posedge clk)
47. begin
48. if(work_en)
49. begin
50. if(~work_en_1d || tx_busy_f)
51. write_pluse <= `UD 1'b1;
52. else
53. write_pluse <= `UD 1'b0;
54. end
55. else
56. write_pluse <= `UD 1'b0;
57. end
58.

59. always @ (posedge clk)
60. begin
61. if(~work_en & tx_busy_f)
62. data_num <= 7'h0;
63. else if(write_pluse)
64. data_num <= data_num + 8'h1;
65. end
66.

67. always @(posedge clk)
68. begin

69. write_en <= `UD write_pluse;
70. end
71.

72. // 字符的对应 ASCII码

73. always @ (posedge clk)
74. begin
75. case(data_num)
76. 8'h0 ,
77. 8'h1 : write_data <= `UD 8'h77;// ASCII code is w
78. 8'h2 : write_data <= `UD 8'h77;// ASCII code is w
79. 8'h3 : write_data <= `UD 8'h77;// ASCII code is w
80. 8'h4 : write_data <= `UD 8'h2E;// ASCII code is .
81. 8'h5 : write_data <= `UD 8'h6D;// ASCII code is m
82. 8'h6 : write_data <= `UD 8'h65;// ASCII code is e
83. 8'h7 : write_data <= `UD 8'h79;// ASCII code is y
84. 8'h8 : write_data <= `UD 8'h65;// ASCII code is e
85. 8'h9 : write_data <= `UD 8'h73;// ASCII code is s
86. 8'ha : write_data <= `UD 8'h65;// ASCII code is e
87. 8'hb : write_data <= `UD 8'h6D;// ASCII code is m
88. 8'hc : write_data <= `UD 8'h69;// ASCII code is i
89. 8'hd : write_data <= `UD 8'h2E;// ASCII code is .
90. 8'he : write_data <= `UD 8'h63;// ASCII code is c

91. 8'hf : write_data <= `UD 8'h6F;// ASCII code is o
92. 8'h10 : write_data <= `UD 8'h6D;// ASCII code is m
93. 8'h11 ,
94. 8'h12 : write_data <= `UD 8'h0d;
95. 8'h13 : write_data <= `UD 8'h0a;
96. default : write_data <= `UD read_data;
97. endcase
98. end
99.

100. endmodule
101.

3.4.4串口实验顶层模块设计

目标：板子 1s向串口助手发送一次十进制显示的“www.meyesemi.com”，通

过串口助手向板子以十六进制形式发送数字，LED以二进制显示亮起。

Uart_data_gen模块产生一个间隔 1S钟的触发信号，同时输出第一个发送字

节，等待 uart_tx输出的 busy下降沿到来，获知 uart_tx进入空闲状态可发送下一

个 byte时，再次给出串口发送的触发脉冲，并输出下一个字节；

Uart_rx 模块接收到数据后输出一个 rx_en 信号（接收数据使能信号）、一

组接收数据信号；接收的数据信号是锁存的，可直接点亮 LED灯；

具体的 module实现如下:

1. `timescale 1ns / 1ps
2. `define UD #1
3.

4. module uart_top(
5. //input ports
6. input clk,
7. input uart_rx,
8.

9. //output ports
10. output [7:0] led,
11. output uart_tx

12.);

13.

14. parameter BPS_NUM = 16'd434;
15. // 设 置 波 特 率 为 4800 时 ， bit 位 宽 时 钟 周 期 个

数:50MHz set 10417 40MHz set 8333
16. // 设 置 波 特 率 为 9600 时 ， bit 位 宽 时 钟 周 期 个

数:50MHz set 5208 40MHz set 4167
17. // 设 置 波 特 率 为 115200 时 ， bit 位 宽 时 钟 周 期 个

数:50MHz set 434 40MHz set 347 12M set 104
18.

19.

20. //===================
21. //wire and reg in the module
22. //===================
23.

24. wire tx_busy; //transmitter is free.
25. wire rx_finish; //receiver is free.
26. wire [7:0] rx_data; //the data receive from uart_rx.

27. wire [7:0] tx_data;

28. wire tx_en; //enable transmit.
29.

30. //=======================
31. //logic
32. //=======================

33. wire rx_en;
34. //=======================
35. //instance
36. //=======================
37. reg [7:0] receive_data;
38. always @(posedge clk) receive_data <= led;
39. uart_data_gen uart_data_gen(
40. .clk (clk),//input

clk,

41. .read_data (receive_data),//input [7:0]
read_data,

42. .tx_busy (tx_busy), //input
tx_busy,

43. .write_max_num (8'h14), //input [7:0] w
rite_max_num,

44. .write_data (tx_data), //output reg [7:
0] write_data

45. .write_en (tx_en) //output reg
write_en

46.);
47.

48. //uart transmit data module.
49. uart_tx #(
50. .BPS_NUM (BPS_NUM) //parameter BPS_N

UM = 16'd434

51.)
52. u_uart_tx(
53. .clk (clk),// input

clk,

54. .tx_data (tx_data),// input [7:0]
tx_data,

55. .tx_pluse (tx_en),// input
tx_pluse,

56. .uart_tx (uart_tx),// output reg
uart_tx,

57. .tx_busy (tx_busy) // output
tx_busy

58.);
59.

60. //Uart receive data module.
61. uart_rx #(
62. .BPS_NUM (BPS_NUM) //parameter BPS_

NUM = 16'd434

63.)

64. u_uart_rx (
65. .clk (clk),// input

clk,

66. .uart_rx (uart_rx),// input
uart_rx,

67. .rx_data (rx_data),// output reg [7:
0] rx_data,

68. .rx_en (rx_en),// output reg
rx_en,

69. .rx_finish (rx_finish) // output
rx_finish

70.);
71.

72. assign led = rx_data;
73.

74. endmodule
75.

3.5实验现象

用 SSCOM串口调试工具，波特率设置为 115200bps，数据格式为 1位起始

位、8位数据位、无校验位、1位结束位，用 Type-C连接开发板与电脑后有如下

现象：

实验现象一：在串口工具中每隔 1S中打印一次：“www.meyesemi.com”；

实验现象二：

在串口工具上以 Hex 格式发送 55；我们可看到 PG2T70H 板卡上的

LED1,LED3,LED5,LED7被点亮，LED2,LED4,LED6,LED8为熄灭状态；

发送 AA；我们可看到 PG2T70H板卡上的 LED2,LED4,LED6,LED8被点亮，

LED1,LED3,LED5,LED7为熄灭状态。

也可以试着发送其他数据（00~FF）,看一下 LED灯的变化；

4_5.HDMI实验例程说明

4_5.1PG2T70H开发板简介

HDMI输入接口采用宏晶微MS7200HMDI接收芯片，HDMI输出接口采用

宏晶微 MS7210HMDI发送芯片。芯片兼容 HDMI1.4b 及以下标准视频的 3D 传

输格式，最高分辨率高达 4K@30Hz，最高采样率达到 300MHz，支持 YUV 和

RGB之间的色彩空间转换，数字接口支持 YUV及 RGB格式。

MS7200 和 MS7210 的 IIC 配置接口与 FPGA 的 IO 相连，通过 FPGA 的编

程来对芯片进行初始化和配置操作。

PG2T70H开发板上将MS7200的SA管脚下拉到地，故 IIC的 ID地址为0x56，

将MS7210的 SA管脚上拉到电源电压，故 IIC的 ID 地址为 0xB2（详情请查看

“PG2T70H开发板硬件使用手册”）。

4_5.2实验目的

实验 1：MES50HP开发板通过 HDMI在屏幕上显示彩条；

实验 2.MES50HP开发板 HDMIIN 接收，通过 HDMIOUT实现环路输出；

4_5.3实验原理

4_5.3.1显示原理

下图表示一个 8*8像素的画面，图中每个格子表示一个像素点，显示图像时

像素点快速点亮的过程按表格中编号的顺序逐个点亮，从左到右，从上到下，按

图中箭头方向的“Z”字形顺序。

以上图为例，每行 8个像素点，每完成一行信号的传输，会转到下一行信号

传输，直到完成第 8行数据的传输，就完成了一个画面的数据传输了，一个画面

也称为一场或一帧，显示每秒中刷新的帧数称为帧率。比如 1920*1080P像素，

就是 1行有效像素点 1920，一场有效行为 1080行。

每个像素点的像素值数据，对应每个像素点的颜色。常见的像素值表示格式

比如：RGB888，RGB分别代表：红 R,绿 G，蓝 B，888是指 R、G、B分别有

8bit，也就是 R、G、B每一色光有 28=256 级阶调，通过 RGB三色光的不同组

合，一个像素上最多可显示 24位的 256*256*256=16,777,216色。

像素数据源源不断输送进来，行、场的切换通过行场同步信号来控制，即

hsync（行同步）和 vsync（场同步信号）。

上图中 Addressable 部分内容是在显示器中可看到的区域，像素点是否有效

通过 DE 信号标识；Border 可理解为显示黑边或者显示边框，通常 Border 显示

的像素值是 0（黑色）。行、场切换过程都是在用户感受不到的区域进行的，这

个区域就是 Blanking 部分，称为消隐区间。同步信号上升沿表示新的一行/一场

开始，Hsync对应行，Vsync对应场。

彩条产生：

本实验采用 1920*1080@60的视频规格，详细时序参数如下：

HDMI显示的数据源采用verilog编写的显示时序产生模块 sync_vg实现上图

的时序，彩条生成模块 pattern_vg根据像素点所在位置，即列数和行数确定像素

值，实现彩条图案。

彩条按照每行均匀分成 8部分，根据每行的像素点数的范围对像素值设置成

对应的颜色，实现彩条信号。

4_5.3.2HDMI_PHY配置

MS7200为 HMDI接收芯片，MS7210为 HMDI发送芯片，芯片的 IIC配置

接口已与 FPGA的 IO 相连，芯片正常使用需要通过 FPGA的对芯片进行初始化

和配置操作。

hdmi_loop 例程包含对 MS7200 和 MS7210 的配置模块 ms72xx_ctl，已将

MS7200 和 MS7210 配置成 1920*1080@60RGB888 模式，配置流程参考源码，

用户可例化模块 ms72xx_ctl使用。

4_5.4实验源码设计

实验 1：hdmi_test

HDMI输出彩条显示例程，分成 4个模块，时钟模块 pll、MS7210配置模块

ms72xx_ctl、显示时序产生模块 sync_vg、彩条生成模块 pattern_vg，以下为模块

拓扑图，源码详情请查看 demo。

实验 2：hdmi_loop

HDMI环路例程，将MS7200接收的信号给到MS7210即可实现 HDMI环路

输出，以下为模块拓扑图，源码详情请查看 demo。

4_5.5实验现象

实验 1现象：hdmi_test

连接好 PG2T70H开发板和显示器，下载程序，可以看到显示器显示 8条彩

条。

实验 2现象：hdmi_loop

连接好 PG2T70H 开发板、视频源和显示器，注意视频源必须为

1920*1080P@60，下图为设置分辨率步骤，下载程序，可以看到显示器显示与视

频源一致的图像。

6.DDR3读写实验例程

6.1PG2T70H开发板简介

PG2T70H开发板集成两颗 4Gbit（512MB）DDR3芯片,型号为MT41K256M16。

DDR3的总线宽度共为 32bit。DDR3SDRAM的最高数据速率 800Mbps（详情请

查看“PG2T70H开发板硬件使用手册”）。

6.2实验要求

生成 DDR3IP 官方例程，实现 DDR3 的读写控制，了解其工作原理和用户

接口。

6.3DDR3控制器简介

PG2T70H为用户提供一套完整的 DDRmemory 控制器解决方案，配置方式

比较灵活，采用软核实现 DDRmemory的控制，有如下特点：

支持 DDR3

支持 x8、x16MemoryDevice

最大位宽支持 32bit

支持裁剪的 AXI4总线协议

一个 AXI4256bitHostPort

支持 Self_refresh，Powerdown

支持 BypassDDRC

支持 DDR3WriteLeveling和 DQSGateTraining

DDR3最快速率达 800Mbps

6.4实验设计

6.4.1安装 DDR3IP核

PDS安装后，需手动添加 DDR3IP，请按以下步骤完成：

（1）DDR3IP文件：07_ddr_test_1500\ips2t_hmic_s_v1_11.iar

（2）IP安装步骤：IP核安装与查看用户指南.pdf

6.4.2DDR3读写 Example工程

1.打开 PDS软件，新建工程 ddr3_test，点开如下图标，打开 IPCompiler；

2.选择 DDR3IP，取名，然后点击 Customize；

3.在 DDR3设置界面中 Step1按照如下设置：

4.Step2按照如下设置：

5.Step3按照如下设置，勾选 CustomControl/AddressGroup，管脚约束参考原

理图：

6.Step4为概要，点击 Generate可生成 DDR3IP；

7. 关 闭 本 工 程 ， 按 此 路 径 打 开 Example 工 程 ：

2_Demo\07_ddr_test_1500\ipcore\ddr3_test\pnr

8.打开顶层文件 free_clk、ref_clk可使用同一时钟源：

9.对“Step3已做管脚约束”外的其他管脚，对照原理图使用 UCE工具进行修

改：

10.以下管脚可约束在 LED，方便观察实验现象；

11.可按以下方式查看 IP核的用户指南，了解 Example模块组成；

6.5实验现象

注：例程位置：2_Demo\07_ddr_test_1500\ipcore\ddr3_test\pnr

下载程序，可以看到 LED1常亮，LED2常灭，LED3闪烁，LED4常亮；

信号名称 参考说明 LED编号

ddr_init_done 初始化标志 1

err_flag_led 数据检测错误信号 2

heart_beat_led 心跳信号 3

pll_lock Pll锁定指示 4

7_8.光纤通信测试实验例程

7_8.1PG2T70H开发板简介

PG2T70H内置了线速率高达 6.375Gbps高速串行接口模块，即 HSST。开发

板MES50HP有 2路 SFP光纤接口，用户需购买光模块(市场上 6.375G光模块以

下均可）插入到这 2个光纤接口中进行光纤数据通信（详情请查看“PG2T70H开

发板硬件使用手册”）。

7_8.2实验要求

通过光纤连接实现光模块之间的数据收发。

7_8.3HSST简介

PGL50H内置了线速率高达 6.375Gbps高速串行接口模块，即 HSST，包含

1个 HSST，共 4个全双工收发 LANE，除了 PMA，HSST还集成了丰富的 PCS

功能，可灵活应用于各种串行协议标准。在产品内部，每个 HSST支持 1~4个全

双工收发 LANE。HSST主要特性包括：

支持线速率：0.6bps-6.375Gbps

灵活的参考时钟选择方式

可编程输出摆幅和去加重

接收端自适应线性均衡器

数 据 通 道 支 持

8bitonly,10bitonly,8b10b8bit,16bitonly,20bitonly,8b10b16bit,32bitonly,40bitonly,8b1

0b32bit,64b66b/64b67b16bit,64b66b/64b67b32bit模式

可灵活配置的 PCS，可支持 PCIExpressGEN1,PCIExpressGEN2,XAUI,千兆

以太网,CPRI,SRIO等协议

灵活的字节对齐功能

支持 RxClockSlip功能以保证固定的接收延时

支持协议标准 8b10b编码解码

支持协议标准 64b66b/64b67b数据适配功能

灵活的 CTC方案

支持 x2和 x4的通道绑定

HSST的配置支持动态修改

近端环回和远端环回模式

内置 PRBS功能

7_8.4实验设计

7_8.4.1安装 HSSTIP核

PDS安装后，需手动添加 HSSTIP。

7_8.4.2光纤通信测试例程

1.打开 PDS软件，新建工程 hsst_test，点开如下图标，打开 IPCompiler；

2.选择 HSSTIP，取名，然后点击 Customize；

3.在 HSST设置界面中 ProtocolandRate按照如下设置，Channel0Channel1为

DISABLE，Channel2Channel3为 Fullduplex：

4.AlignmentandCTC按照如下设置：

5.Misc按照如下设置，点击 Generate可生成 HSSTIP：

6.关闭本工程，按此路径打开 Example工程：

2_Demo\8_hsst_test\ipcore\hsst_test\pnr\example_design

7.为了能在开发板上运行，需对顶层文件 hsst_test_dut_top的复位进行修改，

详情请查看 10_hsst_test例程顶层文件：

8.修改管脚分配，详情请查看原理图或 10_hsst_test例程；

9.进行 Debugger插核操作，操作步骤请查看“PDS快速使用手册.pdf”；

10.可按以下方式查看 IP核的用户指南，了解 Example模块组成；

7_8.5实验现象

因为 PG2T70H开发板只有一路 SFP接口，因此用户需购买两块板卡，一块

板卡发送，一块板卡接收，即可运行此例程。把光纤两端接入分别接入两块板卡

的 SFP接口（用户需购买光模块），进行 Debugger 在线调试，可以在窗口中看

到发送和接收的数据一致的。

9.以太网传输实验例程

9.1实验目的

学习如何在 FPGA 上使用 RGMII（简化千兆媒体独立接口）协议实现以太

网通信接口。以及理解并实践以太网 PHY芯片的上电复位和延时复位过程，确

保 PHY能够正确启动和工作。同时学习如何使用 util_gmii_to_rgmii模块，实现

GMII（千兆媒体独立接口）信号与 RGMII 信号之间的转换，解决 FPGA内部使

用 GMII而 PHY使用 RGMII 的问题。

9.2实验原理

GMII 是用于千兆以太网的标准接口，使用 8位数据总线，独立的发送和接

收时钟，数据在时钟的上升沿传输。RGMII 通过使用双边沿触发和 4 位数据总

线，将接口引脚数量减少一半，实现更高的集成度。数据在时钟的上升沿和下降

沿传输。由于 FPGA内部通常使用 GMII信号，而外部 PHY芯片可能采用 RGMII

接口，因此需要通过 util_gmii_to_rgmii模块，实现 GMII 与 RGMII 信号的双向

转换，确保 FPGA与 PHY之间的数据通信顺畅。

PHY芯片在上电后需要一定的时间进行内部寄存器的初始化和自检。通过

power_on_rst模块，利用系统时钟 sys_clk，产生一个延时的复位信号 phy_rst_n。

该模块在上电后计时指定的毫秒数（如 50ms），然后释放复位信号，确保 PHY

芯片有足够的时间完成初始化。

9.3工程说明

9.3.1顶层代码讲解

此例程顶层代码如下所示：

1. `timescale 1ns / 1ps
2. ///

/////////////////

3. // Module Name: ethernet_test

4. ///
/////////////////

5. module ethernet_ test(

6. input sys_clk,
7. input rst_n,
8. output phy_rst_n,
9. output e_mdc,
10. inout e_mdio,
11. output[3:0] rgmii_txd/*synthesis PAP_MARK_DEBUG = "ture"*/,
12. output rgmii_txctl/*synthesis PAP_MARK_DEBUG = "ture"*/,
13. output rgmii_txc/*synthesis PAP_MARK_DEBUG = "ture"*/,
14. input[3:0] rgmii_rxd/*synthesis PAP_MARK_DEBUG = "ture"*/,
15. input rgmii_rxctl/*synthesis PAP_MARK_DEBUG = "ture"*/,
16. input rgmii_rxc/*synthesis PAP_MARK_DEBUG = "ture"*/,
17. output[3:0] led
18.);
19. wire reset_n;
20. wire [7:0] gmii_txd;
21. wire gmii_tx_en;
22. wire gmii_tx_er;
23. wire gmii_tx_clk;
24. wire gmii_crs;
25. wire gmii_col;
26. wire [7:0] gmii_rxd/*synthesis PAP_MARK_DEBUG = "ture"*/;
27. wire gmii_rx_dv/*synthesis PAP_MARK_DEBUG = "ture"*/;
28. wire gmii_rx_er/*synthesis PAP_MARK_DEBUG = "ture"*/;
29. wire gmii_rx_clk;
30. wire [1:0] speed_selection; // 1x gigabit, 01 100Mbps, 00 10

mbps

31. wire duplex_mode; // 1 full, 0 half
32. wire rgmii_rxcpll;
33. assign speed_selection = 2'b10;
34. assign duplex_mode = 1'b1;
35. wire sys_clk;
36. wire sys_clk_w;
37. wire led_r;
38.

39. wire e_rx_dv ;
40. wire [7:0] e_rxd ;

41. wire e_ tx _en ;

42. wire [7:0] e_ txd ;

43. wire e_rst_n ;
44.

45. //assign led =~led_r;
46. /**

47. generate single end clock
48. ***

*********/

49. power_on_rst #
50. (
51. .CLK_FRE(50),
52. .DELAY_MS(50)
53.)
54. reset_power_on_m0
55. (
56. .clk (sys_clk),

57. .rst_n (rst_n),
//user reset high active

58. .power_on_rstn (phy_rst_n)
//power on reset low active

59.);
60.

61. //assign phy_rst_n = 1'b1;
62. util_gmii_to_rgmii util_gmii_to_rgmii_m0(
63. .reset (1'b0),
64.

65. .rgmii_td (rgmii_txd),
66. .rgmii_tx_ctl (rgmii_txctl),
67. .rgmii_txc (rgmii_txc),
68. .rgmii_rd (rgmii_rxd),
69. .rgmii_rx_ctl (rgmii_rxctl),
70. .gmii_rx_clk (gmii_rx_clk),
71.

72. // .gmii_txd (gmii_txd),
73. // .gmii_tx_en (gmii_tx_en),
74. .gmii_txd (e_txd),
75. .gmii_tx_en (e_tx_en),
76.

77. .gmii_tx_er (1'b0),
78. .gmii_tx_clk (gmii_tx_clk),
79. .gmii_crs (gmii_crs),
80. .gmii_col (gmii_col),
81. .gmii_rxd (gmii_rxd),

82. .rgmii_rxc (rgmii_rxc),//add
83. .gmii_rx_dv (gmii_rx_dv),
84. .gmii_rx_er (gmii_rx_er),
85. .speed_selection(speed_selection),
86. .duplex_mode (duplex_mode),
87. .led (led[0]),
88. .sys_clk (sys_clk)
89.);
90.

91.

92.

93. wire [31:0] pack_total_len;
94.

95. gmii_arbi arbi_inst
96. (
97. .clk (gmii_tx_clk),
98. .rst_n (rst_n),
99. .speed (speed_selection),
100. .link (1'b1),
101. .pack_total_len (pack_total_len),
102.

103. .e_rst_n (e_rst_n),
104. .gmii_rx_dv (gmii_rx_dv),
105. .gmii_rxd (gmii_rxd),
106. .gmii_tx_en (gmii_tx_en),
107. .gmii_txd (gmii_txd),
108. .e_rx_dv (e_rx_dv),
109. .e_rxd (e_rxd),
110. .e_tx_en (e_tx_en),
111. .e_txd (e_txd)
112.);
113.

114.

115.

116. mac_test mac_test0
117. (
118. .gmii_tx_clk (gmii_tx_clk),
119. .gmii_rx_clk (gmii_rx_clk) ,
120. .rst_n (rst_n),
121.

122. // .pack_total_len (32'd125000000),//d25000000
d125000000 pack_total_len

123. // .gmii_rx_dv (gmii_rx_dv),
124. // .gmii_rxd (gmii_rxd),

125.

126. .pack_total_len (pack_total_len),//d25000000
d125000000 pack_total_len

127. .gmii_rx_dv (e_rx_dv),
128. .gmii_rxd (e_rxd),
129.

130. .gmii_tx_en (gmii_tx_en),
131. .gmii_txd (gmii_txd)
132.

133.);
134. endmodule

首先，模块的端口定义包括了系统时钟 sys_clk、复位信号 rst_n以及与 PHY

芯片交互的信号。其中，phy_rst_n 是 PHY 芯片的复位信号，e_mdc 和 e_mdio

是用于MDIO 接口的管理数据时钟和数据线，尽管在代码中并未进一步使用。

rgmii_txd、rgmii_txctl、rgmii_txc是 RGMII接口的发送端信号，用于发送数据、

发送控制和发送时钟。rgmii_rxd、rgmii_rxctl、rgmii_rxc是 RGMII 接口的接收端

信号，用于接收数据、接收控制和接收时钟。led用于连接 LED指示灯，显示模

块的运行状态。

在模块内部，定义了一系列的信号来处理 GMII接口的数据传输。gmii_txd、

gmii_tx_en、gmii_rxd、gmii_rx_dv 等信号用于 GMII 接口的数据发送和接收。

speed_selection和 duplex_mode被设定为常数，分别为 2'b10和 1'b1，表示将 PHY

芯片配置为千兆位速率和全双工模式。

接下来，代码实例化了一个 power_on_rst模块，用于在上电时对 PHY芯片

进行延时复位。这个模块通过系统时钟 sys_clk和用户复位信号 rst_n，在上电后

延时 50 毫秒（由参数 DELAY_MS(50)指定），然后释放对 PHY 的复位信号

phy_rst_n。这确保了 PHY芯片有足够的时间进行内部初始化。

然后，代码实例化了 util_gmii_to_rgmii模块，这个模块的作用是实现 GMII

和 RGMII接口之间的信号转换。由于 FPGA内部通常使用 GMII接口，而 PHY

芯片可能使用 RGMII 接口，因此需要进行信号的转换。该模块连接了 GMII 的

发送和接收信号以及对应的 RGMII 信号，同时配置了速率和双工模式。值得注

意的是，在连接发送数据时，gmii_txd和 gmii_tx_en连接的是 e_txd和 e_tx_en，

这意味着发送的数据来自于其他模块的处理，而不是直接从 GMII接口发送。

接下来，代码实例化了一个 gmii_arbi模块，起到仲裁器的作用。这个模块

负责协调GMII接口与MAC测试模块之间的数据传输。它接收来自 PHY的GMII

接收信号 gmii_rx_dv和 gmii_rxd，并将其传递给MAC测试模块（通过 e_rx_dv

和 e_rxd）。同时，它接收来自MAC测试模块的发送信号 e_tx_en和 e_txd，并

通过 GMII 发送信号 gmii_tx_en和 gmii_txd将数据发送到 PHY。这种设计使得

MAC测试模块可以专注于数据的生成和处理，而不必处理底层的 GMII 接口细

节。

最后，代码实例化了一个 mac_test模块，用于生成测试数据包并验证接收到

的数据。该模块使用发送和接收时钟 gmii_tx_clk和 gmii_rx_clk，以及复位信号

rst_n。pack_total_len 是一个 32 位的信号，用于指定要发送的数据包总长度。

mac_test 模块接收来自 gmii_arbi 模块的接收数据 e_rx_dv 和 e_rxd，并通过

gmii_tx_en和 gmii_txd发送数据。

总体而言，这个模块实现了一个完整的以太网通信测试平台。通过

power_on_rst模块，确保 PHY芯片在正确的时间复位。util_gmii_to_rgmii模块解

决了 GMII与 RGMII 接口的兼容性问题。gmii_arbi模块负责数据的仲裁和传递，

使得MAC层的测试模块可以顺利地进行数据的发送和接收。mac_test模块则专

注于生成和验证数据包，实现对以太网通信的功能性测试。

9.3.2util_gmii_to_rgmii模块讲解

util_gmii_to_rgmii模块的源码如下所示：

1.

2. module util_gmii_to_rgmii (
3. reset,
4. rgmii_td,
5. rgmii_tx_ctl,
6. rgmii_txc,
7. rgmii_rd,
8. rgmii_rx_ctl,
9. gmii_rx_clk,
10. rgmii_rxc,
11. gmii_txd,
12. gmii_tx_en,
13. gmii_tx_er,
14. gmii_tx_clk,

15. gmii_crs,
16. gmii_col,
17. gmii_rxd,
18. gmii_rx_dv,
19. gmii_rx_er,
20. speed_selection,
21. duplex_mode,
22. led,
23. pll_phase_shft_lock,
24. clk,
25. sys_clk
26.);
27. input sys_clk;
28. output pll_phase_shft_lock;
29. output clk;
30. output reg led;
31. input rgmii_rxc;//add
32. input reset;
33. output [3:0] rgmii_td;
34. output rgmii_tx_ctl;
35. output rgmii_txc;
36. input [3:0] rgmii_rd;
37. input rgmii_rx_ctl;
38. output gmii_rx_clk;
39. input [7:0] gmii_txd;
40. input gmii_tx_en;
41. input gmii_tx_er;
42. output gmii_tx_clk;
43. output gmii_crs;
44. output gmii_col;
45. output [7:0] gmii_rxd;
46. output gmii_rx_dv;
47. output gmii_rx_er;
48. input [1:0] speed_selection; // 1x gigabit, 01 100Mbps, 00

10mbps

49. input duplex_mode; // 1 full, 0 half
50.

51. wire gigabit;
52. wire gmii_tx_clk_s;
53. wire gmii_rx_dv_s;
54.

55. wire [7:0] gmii_rxd_s;
56. wire rgmii_rx_ctl_delay;
57. wire rgmii_rx_ctl_s;

58. // registers
59. reg tx_reset_d1;
60. reg tx_reset_sync;
61. reg rx_reset_d1;
62. reg [7:0] gmii_txd_r;
63. reg gmii_tx_en_r;
64. reg gmii_tx_er_r;
65. reg [7:0] gmii_txd_r_d1;
66. reg gmii_tx_en_r_d1;
67. reg gmii_tx_er_r_d1;
68.

69. reg rgmii_tx_ctl_r;
70. reg [3:0] gmii_txd_low;
71. reg gmii_col;
72. reg gmii_crs;
73.

74. reg [7:0] gmii_rxd;
75. reg gmii_rx_dv;
76. reg gmii_rx_er;
77. wire padt1 ;
78. wire padt2 ;
79. wire padt3 ;
80. wire padt4 ;
81. wire padt5 ;
82. wire padt6 ;
83. wire stx_txc ;
84. wire stx_ctr ;
85. wire [3:0] stxd_rgm ;
86. assign gigabit = speed_selection [1];
87. assign gmii_tx_clk = gmii_tx_clk_s;
88. assign gmii_tx_clk_s = gmii_rx_clk;
89.

90. //test led
91. reg[28:0] cnt_timer;
92. always @(posedge gmii_tx_clk_s)
93. begin
94. cnt_timer<=cnt_timer+1'b1;
95. if(cnt_timer==29'h3ffffff)
96. begin
97. led=~led;
98. cnt_timer<=29'h0;
99. end
100. end
101.

102. wire gmii_rx_clk;
103.

104.

105. //GTP_CLKBUFG GTP_CLKBUFG_RXSHFT(
106. // .CLKIN (rgmii_rxc),
107. // .CLKOUT (gmii_rx_clk)
108. //);
109.

110. wire rx_clki_shft;
111. pll_sft U_pll_phase_shift(
112. .clkout0 (rx_clki_shft), //125MHz
113. .clkin1 (rgmii_rxc),
114. .clkfb (gmii_rx_clk),
115. .rst (1'b0),
116. .lock ()
117.);
118.

119. GTP_CLKBUFG GTP_CLKBUFG_RXSHFT(
120. .CLKIN (~rx_clki_shft),
121. .CLKOUT (gmii_rx_clk)
122.);
123. //assign gmii_rx_clk=rgmii_rxc;
124. always @(posedge gmii_rx_clk)
125. begin
126. gmii_rxd = gmii_rxd_s;
127. gmii_rx_dv = gmii_rx_dv_s;
128. gmii_rx_er = gmii_rx_dv_s ^ rgmii_rx_ctl_s;
129. end
130.

131. always @(posedge gmii_tx_clk_s) begin
132. tx_reset_d1 <= reset;
133. tx_reset_sync <= tx_reset_d1;
134. end
135.

136. always @(posedge gmii_tx_clk_s)
137. begin
138. rgmii_tx_ctl_r = gmii_tx_en_r ^ gmii_tx_er_r;
139. gmii_txd_low = gigabit ? gmii_txd_r[7:4] : gmii_txd_r[3:0]

;

140. gmii_col = duplex_mode ? 1'b0 : (gmii_tx_en_r| gmii_tx
_er_r) & (gmii_rx_dv | gmii_rx_er) ;

141. gmii_crs = duplex_mode ? 1'b0 : (gmii_tx_en_r| gmii_tx
_er_r| gmii_rx_dv | gmii_rx_er);

142. end

143.

144. always @(posedge gmii_tx_clk_s) begin
145. if (tx_reset_sync == 1'b1) begin
146. gmii_txd_r <= 8'h0;
147. gmii_tx_en_r <= 1'b0;
148. gmii_tx_er_r <= 1'b0;
149. end
150. else
151. begin
152. gmii_txd_r <= gmii_txd;
153. gmii_tx_en_r <= gmii_tx_en;
154. gmii_tx_er_r <= gmii_tx_er;
155. gmii_txd_r_d1 <= gmii_txd_r;
156. gmii_tx_en_r_d1 <= gmii_tx_en_r;
157. gmii_tx_er_r_d1 <= gmii_tx_er_r;
158. end
159. end
160.

161.

162.

163.

164. //-------------------------------------
165. GTP_OSERDES_E2 #
166. (
167. . GRS_EN ("TRUE"),
168. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
169. . TSERDES_EN ("FALSE"),
170. . UPD0_SHIFT_EN ("FALSE"),
171. . UPD1_SHIFT_EN ("FALSE"),
172. . INIT_SET (2'b00),
173. . GRS_TYPE_DQ ("RESET"),
174. . LRS_TYPE_DQ0 ("ASYNC_RESET"),
175. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
176. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
177. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
178. . GRS_TYPE_TQ ("RESET"),
179. . LRS_TYPE_TQ0 ("ASYNC_RESET"),
180. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
181. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
182. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
183. . TRI_EN ("FALSE"),
184. . TBYTE_EN ("FALSE"),
185. . MIPI_EN ("FALSE"),
186. . OCASCADE_EN ("FALSE")

187.) GTP_OSERDES_E2_INST1 (
188. . RST (tx_reset_sync),
189. . OCE (1'b1),
190. . TCE (1'b0),
191. . OCLKDIV (gmii_tx_clk_s),
192. . SERCLK (gmii_tx_clk_s),
193. . OCLK (gmii_tx_clk_s),
194. . MIPI_CTRL (),
195. . UPD0_SHIFT (1'b0),
196. . UPD1_SHIFT (1'b0),
197. . OSHIFTIN0 (),
198. . OSHIFTIN1 (),
199. . DI ({6'd0,gmii_txd_low[3],gmii_txd_r_d1[3]}), // DDR captur

e data

200. . TI (),
201. . TBYTE_IN (),
202. . OSHIFTOUT0 (),
203. . OSHIFTOUT1 (),
204. . DO (stxd_rgm[3]),
205. . TQ (padt2)
206.);
207.

208. GTP_OUTBUF gtp_outbuf2
209. (
210.

211. .I(stxd_rgm[3]),
212. .O(rgmii_td[3])
213.);
214. //---------------------------------------
215. GTP_OSERDES_E2 #
216. (
217. . GRS_EN ("TRUE"),
218. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
219. . TSERDES_EN ("FALSE"),
220. . UPD0_SHIFT_EN ("FALSE"),
221. . UPD1_SHIFT_EN ("FALSE"),
222. . INIT_SET (2'b00),
223. . GRS_TYPE_DQ ("RESET"),
224. . LRS_TYPE_DQ0 ("ASYNC_RESET"),
225. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
226. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
227. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
228. . GRS_TYPE_TQ ("RESET"),
229. . LRS_TYPE_TQ0 ("ASYNC_RESET"),

230. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
231. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
232. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
233. . TRI_EN ("FALSE"),
234. . TBYTE_EN ("FALSE"),
235. . MIPI_EN ("FALSE"),
236. . OCASCADE_EN ("FALSE")
237.) GTP_OSERDES_E2_INST2 (
238. . RST (tx_reset_sync),
239. . OCE (1'b1),
240. . TCE (1'b0),
241. . OCLKDIV (gmii_tx_clk_s),
242. . SERCLK (gmii_tx_clk_s),
243. . OCLK (gmii_tx_clk_s),
244. . MIPI_CTRL (),
245. . UPD0_SHIFT (1'b0),
246. . UPD1_SHIFT (1'b0),
247. . OSHIFTIN0 (),
248. . OSHIFTIN1 (),
249. . DI ({6'd0,gmii_txd_low[2],gmii_txd_r_d1[2]}),
250. . TI (),
251. . TBYTE_IN (),
252. . OSHIFTOUT0 (),
253. . OSHIFTOUT1 (),
254. . DO (stxd_rgm[2]),
255. . TQ (padt3)
256.);
257.

258.

259. GTP_OUTBUF gtp_outbuf3
260. (
261. .I(stxd_rgm[2]),
262. .O(rgmii_td[2])
263.);
264. //---------------------------------
265. GTP_OSERDES_E2 #
266. (
267. . GRS_EN ("TRUE"),
268. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
269. . TSERDES_EN ("FALSE"),
270. . UPD0_SHIFT_EN ("FALSE"),
271. . UPD1_SHIFT_EN ("FALSE"),
272. . INIT_SET (2'b00),
273. . GRS_TYPE_DQ ("RESET"),

274. . LRS_TYPE_DQ0 ("ASYNC_RESET"),
275. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
276. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
277. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
278. . GRS_TYPE_TQ ("RESET"),
279. . LRS_TYPE_TQ0 ("ASYNC_RESET"),
280. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
281. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
282. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
283. . TRI_EN ("FALSE"),
284. . TBYTE_EN ("FALSE"),
285. . MIPI_EN ("FALSE"),
286. . OCASCADE_EN ("FALSE")
287.) GTP_OSERDES_E2_INST3 (
288. . RST (tx_reset_sync),
289. . OCE (1'b1),
290. . TCE (1'b0),
291. . OCLKDIV (gmii_tx_clk_s),
292. . SERCLK (gmii_tx_clk_s),
293. . OCLK (gmii_tx_clk_s),
294. . MIPI_CTRL (),
295. . UPD0_SHIFT (1'b0),
296. . UPD1_SHIFT (1'b0),
297. . OSHIFTIN0 (),
298. . OSHIFTIN1 (),
299. . DI ({6'd0,gmii_txd_low[1],gmii_txd_r_d1[1]}),
300. . TI (),
301. . TBYTE_IN (),
302. . OSHIFTOUT0 (),
303. . OSHIFTOUT1 (),
304. . DO (stxd_rgm[1]),
305. . TQ (padt4)
306.);
307.

308.

309. GTP_OUTBUF gtp_outbuf4
310. (
311. .I(stxd_rgm[1]),
312. .O(rgmii_td[1])
313.);
314. //--------------------------------------
315.

316. GTP_OSERDES_E2 #
317. (

318. . GRS_EN ("TRUE"),
319. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
320. . TSERDES_EN ("FALSE"),
321. . UPD0_SHIFT_EN ("FALSE"),
322. . UPD1_SHIFT_EN ("FALSE"),
323. . INIT_SET (2'b00),
324. . GRS_TYPE_DQ ("RESET"),
325. . LRS_TYPE_DQ0 ("ASYNC_RESET"),
326. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
327. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
328. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
329. . GRS_TYPE_TQ ("RESET"),
330. . LRS_TYPE_TQ0 ("ASYNC_RESET"),
331. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
332. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
333. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
334. . TRI_EN ("FALSE"),
335. . TBYTE_EN ("FALSE"),
336. . MIPI_EN ("FALSE"),
337. . OCASCADE_EN ("FALSE")
338.) GTP_OSERDES_E2_INST4 (
339. . RST (tx_reset_sync),
340. . OCE (1'b1),
341. . TCE (1'b0),
342. . OCLKDIV (gmii_tx_clk_s),
343. . SERCLK (gmii_tx_clk_s),
344. . OCLK (gmii_tx_clk_s),
345. . MIPI_CTRL (),
346. . UPD0_SHIFT (1'b0),
347. . UPD1_SHIFT (1'b0),
348. . OSHIFTIN0 (),
349. . OSHIFTIN1 (),
350. . DI ({6'd0,gmii_txd_low[0],gmii_txd_r_d1[0]}),
351. . TI (),
352. . TBYTE_IN (),
353. . OSHIFTOUT0 (),
354. . OSHIFTOUT1 (),
355. . DO (stxd_rgm[0]),
356. . TQ (padt5)
357.);
358.

359.

360. GTP_OUTBUF gtp_outbuf5
361. (

362.

363. .I(stxd_rgm[0]),
364.

365. .O(rgmii_td[0])
366.);
367. //------------------------------------
368. GTP_OSERDES_E2 #
369. (
370. . GRS_EN ("TRUE"),
371. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
372. . TSERDES_EN ("FALSE"),
373. . UPD0_SHIFT_EN ("FALSE"),
374. . UPD1_SHIFT_EN ("FALSE"),
375. . INIT_SET (2'b00),
376. . GRS_TYPE_DQ ("RESET"),
377. . LRS_TYPE_DQ0 ("ASYNC_RESET"),
378. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
379. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
380. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
381. . GRS_TYPE_TQ ("RESET"),
382. . LRS_TYPE_TQ0 ("ASYNC_RESET"),
383. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
384. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
385. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
386. . TRI_EN ("FALSE"),
387. . TBYTE_EN ("FALSE"),
388. . MIPI_EN ("FALSE"),
389. . OCASCADE_EN ("FALSE")
390.) GTP_OSERDES_E2_INST0 (
391. . RST (tx_reset_sync),
392. . OCE (1'b1),
393. . TCE (1'b0),
394. . OCLKDIV (gmii_tx_clk_s),
395. . SERCLK (gmii_tx_clk_s),
396. . OCLK (gmii_tx_clk_s),
397. . MIPI_CTRL (),
398. . UPD0_SHIFT (1'b0),
399. . UPD1_SHIFT (1'b0),
400. . OSHIFTIN0 (),
401. . OSHIFTIN1 (),
402. . DI ({6'd0,rgmii_tx_ctl_r,gmii_tx_en_r_d1}),
403. . TI (),
404. . TBYTE_IN (),
405. . OSHIFTOUT0 (),

406. . OSHIFTOUT1 (),
407. . DO (stx_ctr),
408. . TQ (padt1)
409.);
410.

411.

412. GTP_OUTBUF gtp_outbuf1
413. (
414.

415. .I(stx_ctr),
416. .O(rgmii_tx_ctl)
417.);
418. //-----------------------------
419. GTP_OSERDES_E2 #
420. (
421. . GRS_EN ("TRUE"),
422. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
423. . TSERDES_EN ("FALSE"),
424. . UPD0_SHIFT_EN ("FALSE"),
425. . UPD1_SHIFT_EN ("FALSE"),
426. . INIT_SET (2'b00),
427. . GRS_TYPE_DQ ("RESET"),
428. . LRS_TYPE_DQ0 ("ASYNC_RESET"),
429. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
430. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
431. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
432. . GRS_TYPE_TQ ("RESET"),
433. . LRS_TYPE_TQ0 ("ASYNC_RESET"),
434. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
435. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
436. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
437. . TRI_EN ("FALSE"),
438. . TBYTE_EN ("FALSE"),
439. . MIPI_EN ("FALSE"),
440. . OCASCADE_EN ("FALSE")
441.) GTP_OSERDES_E2_INST5 (
442. . RST (tx_reset_sync),
443. . OCE (1'b1),
444. . TCE (1'b0),
445. . OCLKDIV (gmii_tx_clk_s),
446. . SERCLK (gmii_tx_clk_s),
447. . OCLK (gmii_tx_clk_s),
448. . MIPI_CTRL (),
449. . UPD0_SHIFT (1'b0),

450. . UPD1_SHIFT (1'b0),
451. . OSHIFTIN0 (),
452. . OSHIFTIN1 (),
453. . DI (8'b00000001),
454. . TI (),
455. . TBYTE_IN (),
456. . OSHIFTOUT0 (),
457. . OSHIFTOUT1 (),
458. . DO (rgmii_txc),
459. . TQ (padt6)
460.);
461.

462.

463. //wire [7:0] delay_step_b ;
464. //wire [7:0] delay_step_gray ;
465. //
466. //assign delay_step_b = 8'd128; // 0~247 , 10ps/step
467. //
468. //assign delay_step_gray=((delay_step_b>>1)^delay_step_b); // o

nly support gray code

469. //
470. //GTP_IODELAY_E2 #
471. //(
472. //.DELAY_STEP_SEL ("PORT"),//PORT PARAMETER
473. //.DELAY_STEP_VALUE()
474. //)
475. // GTP_IODELAY_E2_inst0 (
476. //.DI (stx_txc), // rx clk input
477. //.DELAY_SEL (1'b1),
478. //.DELAY_STEP (delay_step_gray),
479. //.DO (rgmii_txc) // rx clk output
480. //);
481.

482. //---------------------------------------
483. wire [5:0] nc1;
484. GTP_ISERDES_E2 #
485. (
486. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
487. .CASCADE_MODE("MASTER"),
488. .BITSLIP_EN("FALSE"),
489. .GRS_EN ("TRUE"),
490. .NUM_ICE(1'b0),
491. .GRS_TYPE_Q0("RESET"),
492. .GRS_TYPE_Q1("RESET"),

493. .GRS_TYPE_Q2("RESET"),
494. .GRS_TYPE_Q3("RESET"),
495. .LRS_TYPE_Q0("ASYNC_RESET"),
496. .LRS_TYPE_Q1("ASYNC_RESET"),
497. .LRS_TYPE_Q2("ASYNC_RESET"),
498. .LRS_TYPE_Q3("ASYNC_RESET")
499.) gtp_iserdes_inst0 (
500. .RST(1'b0),
501. .ICE0(1'b1),
502. .ICE1(1'b0),
503. .DESCLK (gmii_rx_clk),
504. .ICLK (gmii_rx_clk),
505. .ICLKDIV(gmii_rx_clk),
506. .DI (rgmii_rd[0]),
507. .BITSLIP(),
508. .ISHIFTIN0(),
509. .ISHIFTIN1(),
510. .IFIFO_WADDR(),
511. .IFIFO_RADDR(),
512. .DO({nc1,gmii_rxd_s[4],gmii_rxd_s[0]}),
513. .ISHIFTOUT0(),
514. .ISHIFTOUT1()
515.);
516. //---
517. wire [5:0] nc2;
518. GTP_ISERDES_E2 #
519. (
520. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
521. .CASCADE_MODE("MASTER"),
522. .BITSLIP_EN("FALSE"),
523. .GRS_EN ("TRUE"),
524. .NUM_ICE(1'b0),
525. .GRS_TYPE_Q0("RESET"),
526. .GRS_TYPE_Q1("RESET"),
527. .GRS_TYPE_Q2("RESET"),
528. .GRS_TYPE_Q3("RESET"),
529. .LRS_TYPE_Q0("ASYNC_RESET"),
530. .LRS_TYPE_Q1("ASYNC_RESET"),
531. .LRS_TYPE_Q2("ASYNC_RESET"),
532. .LRS_TYPE_Q3("ASYNC_RESET")
533.) gtp_iserdes_inst1 (
534. .RST(1'b0),
535. .ICE0(1'b1),
536. .ICE1(1'b0),

537. .DESCLK (gmii_rx_clk),
538. .ICLK (gmii_rx_clk),
539. .ICLKDIV(gmii_rx_clk),
540. .DI (rgmii_rd[1]),
541. .BITSLIP(),
542. .ISHIFTIN0(),
543. .ISHIFTIN1(),
544. .IFIFO_WADDR(),
545. .IFIFO_RADDR(),
546. .DO({nc2,gmii_rxd_s[5],gmii_rxd_s[1]}),
547. .ISHIFTOUT0(),
548. .ISHIFTOUT1()
549.);
550. //------------------------------------
551. wire [5:0] nc3;
552. GTP_ISERDES_E2 #
553. (
554. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
555. .CASCADE_MODE("MASTER"),
556. .BITSLIP_EN("FALSE"),
557. .GRS_EN ("TRUE"),
558. .NUM_ICE(1'b0),
559. .GRS_TYPE_Q0("RESET"),
560. .GRS_TYPE_Q1("RESET"),
561. .GRS_TYPE_Q2("RESET"),
562. .GRS_TYPE_Q3("RESET"),
563. .LRS_TYPE_Q0("ASYNC_RESET"),
564. .LRS_TYPE_Q1("ASYNC_RESET"),
565. .LRS_TYPE_Q2("ASYNC_RESET"),
566. .LRS_TYPE_Q3("ASYNC_RESET")
567.) gtp_iserdes_inst2 (
568. .RST(1'b0),
569. .ICE0(1'b1),
570. .ICE1(1'b0),
571. .DESCLK (gmii_rx_clk),
572. .ICLK (gmii_rx_clk),
573. .ICLKDIV(gmii_rx_clk),
574. .DI (rgmii_rd[2]),
575. .BITSLIP(),
576. .ISHIFTIN0(),
577. .ISHIFTIN1(),
578. .IFIFO_WADDR(),
579. .IFIFO_RADDR(),
580. .DO ({nc3,gmii_rxd_s[6],gmii_rxd_s[2]}),

581. .ISHIFTOUT0(),
582. .ISHIFTOUT1()
583.);
584. //---------------------------------------
585. wire [5:0] nc4;
586. GTP_ISERDES_E2 #
587. (
588. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
589. .CASCADE_MODE("MASTER"),
590. .BITSLIP_EN("FALSE"),
591. .GRS_EN ("TRUE"),
592. .NUM_ICE(1'b0),
593. .GRS_TYPE_Q0("RESET"),
594. .GRS_TYPE_Q1("RESET"),
595. .GRS_TYPE_Q2("RESET"),
596. .GRS_TYPE_Q3("RESET"),
597. .LRS_TYPE_Q0("ASYNC_RESET"),
598. .LRS_TYPE_Q1("ASYNC_RESET"),
599. .LRS_TYPE_Q2("ASYNC_RESET"),
600. .LRS_TYPE_Q3("ASYNC_RESET")
601.) gtp_iserdes_inst3 (
602. .RST(1'b0),
603. .ICE0(1'b1),
604. .ICE1(1'b0),
605. .DESCLK (gmii_rx_clk),
606. .ICLK (gmii_rx_clk),
607. .ICLKDIV(gmii_rx_clk),
608. .DI (rgmii_rd[3]),
609. .BITSLIP(),
610. .ISHIFTIN0(),
611. .ISHIFTIN1(),
612. .IFIFO_WADDR(),
613. .IFIFO_RADDR(),
614. .DO ({nc4,gmii_rxd_s[7],gmii_rxd_s[3]}),
615. .ISHIFTOUT0(),
616. .ISHIFTOUT1()
617.);
618. //--
619. wire [5:0] nc5;
620. GTP_ISERDES_E2 #
621. (
622. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
623. .CASCADE_MODE("MASTER"),
624. .BITSLIP_EN("FALSE"),

625. .GRS_EN ("TRUE"),
626. .NUM_ICE(1'b0),
627. .GRS_TYPE_Q0("RESET"),
628. .GRS_TYPE_Q1("RESET"),
629. .GRS_TYPE_Q2("RESET"),
630. .GRS_TYPE_Q3("RESET"),
631. .LRS_TYPE_Q0("ASYNC_RESET"),
632. .LRS_TYPE_Q1("ASYNC_RESET"),
633. .LRS_TYPE_Q2("ASYNC_RESET"),
634. .LRS_TYPE_Q3("ASYNC_RESET")
635.) gtp_iserdes_inst4 (
636. .RST(1'b0),
637. .ICE0(1'b1),
638. .ICE1(1'b0),
639. .DESCLK (gmii_rx_clk),
640. .ICLK (gmii_rx_clk),
641. .ICLKDIV(gmii_rx_clk),
642. .DI (rgmii_rx_ctl),
643. .BITSLIP(),
644. .ISHIFTIN0(),
645. .ISHIFTIN1(),
646. .IFIFO_WADDR(),
647. .IFIFO_RADDR(),
648. .DO ({nc5,rgmii_rx_ctl_s,gmii_rx_dv_s}),
649. .ISHIFTOUT0(),
650. .ISHIFTOUT1()
651.);
652. endmodule

模块的端口定义了输入和输出信号，包括复位信号 reset、系统时钟 sys_clk、

GMII和RGMII接口的相关信号，以及速度和双工模式的选择信号 speed_selection

和 duplex_mode。其中，rgmii_td、rgmii_tx_ctl、rgmii_txc是 RGMII 发送端口信

号，rgmii_rd、rgmii_rx_ctl、rgmii_rxc是 RGMII接收端口信号。gmii_txd、gmii_tx_en、

gmii_tx_er、gmii_tx_clk是 GMII 发送信号，gmii_rxd、gmii_rx_dv、gmii_rx_er、

gmii_rx_clk是 GMII接收信号。led用于状态指示。

在模块内部，首先定义了一些中间信号和寄存器，用于数据和状态的暂存和

同步。gigabit 信号通过 speed_selection 的高位确定，表示是否处于千兆模式。

gmii_tx_clk_s被分配为 gmii_rx_clk，用于同步发送和接收时钟。

在发送路径上，模块使用了 GTP_OSERDES_E2（输出串并转换器）来将并

行的 GMII 数据转换为 RGMII 所需的 DDR（双倍数据速率）串行数据。为了实

现这一点，代码实例化了多个 GTP_OSERDES_E2模块，每个模块负责一个数据

位或控制信号的转换。

具体来说，发送数据部分首先对GMII发送数据和控制信号进行寄存器暂存，

以消除亚稳态和同步问题。gmii_txd_r、gmii_tx_en_r、gmii_tx_er_r 用于存储当

前的发送数据和控制信号，gmii_txd_r_d1、gmii_tx_en_r_d1、gmii_tx_er_r_d1用

于存储前一个时钟周期的数据，这样可以在 DDR传输中同时获得上升沿和下降

沿的数据。

然后，通过实例化 GTP_OSERDES_E2模块，将 8位的 GMII 数据分成高 4

位和低 4位，分别在时钟的上升沿和下降沿传输，形成 RGMII 所需的 4位 DDR

数据。每个 GTP_OSERDES_E2实例对应 RGMII 的一个数据位或控制信号，配

置为“DDR2TO1_SAME_EDGE”模式，实现从双倍速率到单倍速率的转换。

在接收路径上，模块使用了 GTP_ISERDES_E2（输入串并转换器）来将

RGMII 的 DDR 串行数据转换为并行的 GMII 数据。每个 GTP_ISERDES_E2 实

例接收 RGMII的一个数据位或控制信号，配置为“DDR1TO2_SAME_PIPELINED”

模式，实现从单倍速率到双倍速率的转换。接收到的 RGMII 数据在时钟的上升

沿和下降沿被采样，然后组合成 8位的 GMII数据 gmii_rxd_s。

为了保证接收数据的同步性，代码还使用了一个 PLL（锁相环）模块 pll_sft

对接收时钟 rgmii_rxc进行相位偏移调整，生成了 gmii_rx_clk，用于驱动接收数

据的采样。这个处理是为了补偿 RGMII 接口中的时钟和数据之间的相位偏移，

确保在正确的时刻采样数据。

在主逻辑中，always 块用于在 gmii_rx_clk 的时钟域下，将采样到的 GMII

接收数据和控制信号更新到寄存器 gmii_rxd、gmii_rx_dv 和 gmii_rx_er 中。

gmii_rx_er通过 gmii_rx_dv_s和 rgmii_rx_ctl_s的异或得到，表示接收错误信号。

在发送时钟域 gmii_tx_clk_s下，模块通过一系列寄存器和逻辑，生成 RGMII

的 发 送 控 制 信 号 rgmii_tx_ctl_r 和 数 据 gmii_txd_low 。 rgmii_tx_ctl_r 是

gmii_tx_en_r和 gmii_tx_er_r 的异或，用于指示发送数据的有效性和错误状态。

gmii_txd_low根据当前的工作速率 gigabit，在千兆模式下取 gmii_txd_r的高 4位，

在百兆或十兆模式下取低 4位。

代码还处理了碰撞检测信号 gmii_col和载波检测信号 gmii_crs，在半双工模

式下，根据发送和接收的活动状态生成对应的信号。在全双工模式下，这些信号

被置为 0。

为了实现对时钟信号的输出，模块还实例化了一个 GTP_OSERDES_E2模块，

用于产生 RGMII的发送时钟 rgmii_txc。发送时钟以 DDR模式输出，在 RGMII

接口中用于同步发送的数据和控制信号。

模块还包含一个简单的 LED 闪烁逻辑，用于指示模块的运行状态。在

gmii_tx_clk_s时钟下，一个计数器 cnt_timer累加，当达到一定值时翻转 led信号，

实现 LED的周期性闪烁。

总的来说，这个模块通过使用 FPGA的高速串并转换器和相位调整技术，实

现了 GMII 和 RGMII 接口之间的信号转换，满足了千兆以太网通信的要求。模

块精细地处理了发送和接收路径上的数据和控制信号的时序和同步，确保了数据

传输的可靠性。同时，通过对速率和双工模式的配置，模块能够适应不同的工作

模式，为以太网通信的实现提供了灵活性。

9.3.3gmii_arbi模块讲解

gmii_arbi模块的源码如下：

1. `timescale 1ns / 1ps
2. ///

/////////////////

3. // Module Name: ethernet_test
4. ///

/////////////////

5. module gmii_arbi
6. (
7. input clk,
8. input rst_n,
9. input [1:0] speed, //以太网速度

10. input link, //Link 信

号

11. (* MARK_DEBUG="true" *)input gmii_rx_dv,//外部的

gmii接收有效

12. (* MARK_DEBUG="true" *)input [7:0] gmii_rxd,//外部的gmii
接收数据

13. (* MARK_DEBUG="true" *)input gmii_tx_en,//外部的

gmii发送使能

14. (* MARK_DEBUG="true" *)input [7:0] gmii_txd, //外部

的 gmii发送数据

15. output reg [31:0] pack_total_len, //delay time 1s
16. output e_rst_n,
17. (* MARK_DEBUG="true" *)output reg e_rx_dv,//仲裁后接收

有效

18. (* MARK_DEBUG="true" *)output reg [7:0] e_rxd,//仲裁后接收数

据

19. (* MARK_DEBUG="true" *)output reg e_tx_en,//仲裁后发送

使能

20. (* MARK_DEBUG="true" *)output reg [7:0] e_txd//仲裁后发送数据

21.);
22.

23. reg eth_1000m_en ;
24. wire eth_10_100m_en ;
25. reg eth_100m_en ;
26. reg eth_10m_en ;
27. reg [1:0] speed_d0 ;
28. reg [1:0] speed_d1 ;
29. reg [1:0] speed_d2 ;
30. reg link_d0 ;
31. reg link_d1 ;
32. reg link_d2 ;
33.

34. wire e10_100_tx_en ;
35. wire [7:0] e10_100_txd ;
36. wire e10_100_rx_dv ;
37. wire [7:0] e10_100_rxd ;
38.

39. reg e_rst_en ;
40. reg [7:0] e_rst_cnt ;
41.

42. assign e_rst_n = link_d2 & e_rst_en ;
43.

44. always @(posedge clk or negedge rst_n)
45. begin
46. if (~rst_n)
47. begin
48. speed_d0 <= 2'b00 ;
49. speed_d1 <= 2'b00 ;
50. speed_d2 <= 2'b00 ;
51. link_d0 <= 1'b0 ;
52. link_d1 <= 1'b0 ;
53. link_d2 <= 1'b0 ;

54. end
55. else
56. begin
57. speed_d0 <= speed ;
58. speed_d1 <= speed_d0 ;
59. speed_d2 <= speed_d1 ;
60. link_d0 <= link ;
61. link_d1 <= link_d0 ;
62. link_d2 <= link_d1 ;
63. end
64. end
65.

66.

67.

68. always @(posedge clk or negedge rst_n)
69. begin
70. if (~rst_n)
71. begin
72. eth_1000m_en <= 1'b0 ;
73. eth_100m_en <= 1'b0 ;
74. eth_10m_en <= 1'b0 ;
75. pack_total_len <= 32'd2500000 ;
76. end
77. else if (speed_d2 == 2'b10) //1000M
78. begin
79. eth_1000m_en <= 1'b1 ;
80. eth_100m_en <= 1'b0 ;
81. eth_10m_en <= 1'b0 ;
82. pack_total_len <= 32'd125000000 ; //1s
83. end
84. else if (speed_d2 == 2'b01) //100M
85. begin
86. eth_1000m_en <= 1'b0 ;
87. eth_100m_en <= 1'b1 ;
88. eth_10m_en <= 1'b0 ;
89. pack_total_len <= 32'd25000000 ; //1s
90. end
91. else if (speed_d2 == 2'b00) //10M
92. begin
93. eth_1000m_en <= 1'b0 ;
94. eth_100m_en <= 1'b0 ;
95. eth_10m_en <= 1'b1 ;
96. pack_total_len <= 32'd2500000 ; //1s
97. end

98.

99. end
100.

101. always @(posedge clk or negedge rst_n)
102. begin
103. if (~rst_n)
104. begin
105. e_rx_dv <= 1'b0 ;
106. e_rxd <= 8'd0 ;
107. e_tx_en <= 1'b0 ;
108. e_txd <= 8'd0 ;
109. end
110. else if (eth_1000m_en)
111. begin
112. e_rx_dv <= gmii_rx_dv ;
113. e_rxd <= gmii_rxd ;
114. e_tx_en <= gmii_tx_en ;
115. e_txd <= gmii_txd ;
116. end
117. else if (eth_100m_en | eth_10m_en)
118. begin
119. e_rx_dv <= e10_100_rx_dv ;
120. e_rxd <= e10_100_rxd ;
121. e_tx_en <= e10_100_tx_en ;
122. e_txd <= e10_100_txd ;
123. end
124. end
125.

126.

127.

128. always @(posedge clk or negedge rst_n)
129. begin
130. if (~rst_n)
131. e_rst_en <= 1'b1 ;
132. else if (speed_d2 != speed_d1)
133. e_rst_en <= 1'b0 ;
134. else if (e_rst_cnt == 8'd200)
135. e_rst_en <= 1'b1 ;
136. end
137.

138. always @(posedge clk or negedge rst_n)
139. begin
140. if (~rst_n)
141. e_rst_cnt <= 8'd0 ;

142. else if (~e_rst_en)
143. e_rst_cnt <= e_rst_cnt + 1'b1 ;
144. else
145. e_rst_cnt <= 8'd0 ;
146. end
147.

148. assign eth_10_100m_en = eth_100m_en | eth_10m_en ;
149.

150. gmii_tx_buffer tx_buffer_inst
151. (
152. .clk (clk),
153. .rst_n (e_rst_n),
154. .eth_10_100m_en (eth_10_100m_en),
155. .link (e_rst_n),
156. .gmii_tx_en (gmii_tx_en),
157. .gmii_txd (gmii_txd),
158. .e10_100_tx_en (e10_100_tx_en),
159. .e10_100_txd (e10_100_txd)
160.);
161.

162.

163. gmii_rx_buffer rx_buffer_inst
164. (
165. .clk (clk),
166. .rst_n (e_rst_n),
167. .link (e_rst_n),
168. .eth_100m_en (eth_100m_en),
169. .eth_10m_en (eth_10m_en),
170. .gmii_rx_dv (gmii_rx_dv),
171. .gmii_rxd (gmii_rxd),
172. .e10_100_rx_dv (e10_100_rx_dv),
173. .e10_100_rxd (e10_100_rxd)
174.

175.);
176.

177. endmodule

模块的输入包括系统时钟 clk、复位信号 rst_n、以太网速度选择信号 speed

（两位，00表示 10Mbps，01表示 100Mbps，10表示 1000Mbps），链路状态信

号 link，以及 GMII 接口的发送和接收信号 gmii_tx_en、gmii_txd、gmii_rx_dv、

gmii_rxd。输出包括一个 32位的 pack_total_len，用于指示数据包的总长度，e_rst_n

信号，用于对MAC层的复位控制，以及仲裁后的发送和接收信号 e_tx_en、e_txd、

e_rx_dv、e_rxd，供MAC层使用。

在模块内部，首先对 speed和 link信号进行多级寄存器同步，防止由于信号

的异步变化导致的亚稳态问题。通过寄存器 speed_d0、speed_d1、speed_d2 和

link_d0、link_d1、link_d2，将 speed和 link信号同步到系统时钟域中。

接下来，根据同步后的速度信号 speed_d2，确定当前的以太网速度模式。若

speed_d2为 2'b10，表示处于 1000Mbps（千兆）模式，设置 eth_1000m_en为高

电平， eth_100m_en 和 eth_10m_en 为低电平，同时将 pack_total_len 设为

32'd125000000，用于后续的计时或数据长度控制。若 speed_d2为 2'b01，表示处

于 100Mbps 模式，设置 eth_100m_en 为高电平，其他为低电平，pack_total_len

设为 32'd25000000。若 speed_d2为 2'b00，表示处于 10Mbps模式，设置 eth_10m_en

为高电平，其他为低电平，pack_total_len设为 32'd2500000。

模块还通过 e_rst_en 和 e_rst_cnt 实现对 MAC 层的复位控制。当速度信号

speed_d2发生变化时，e_rst_en被置为低电平，开始对MAC层进行复位。e_rst_cnt

开始计数，当计数达到 8'd200时，e_rst_en重新置为高电平，结束复位过程。e_rst_n

信号由 link_d2和 e_rst_en的逻辑与得到，只有当链路连接且复位结束时，e_rst_n

为高电平，MAC层才能正常工作。

在数据传输方面，当 eth_1000m_en为高电平，即处于千兆模式时，模块直

接将 GMII接口的发送和接收信号 gmii_tx_en、gmii_txd、gmii_rx_dv、gmii_rxd

传递给MAC层的接口 e_tx_en、e_txd、e_rx_dv、e_rxd。当处于 100Mbps或 10Mbps

模式，即 eth_100m_en 或 eth_10m_en为高电平时，数据需要经过速率适配模块

进行处理。模块实例化了 gmii_tx_buffer和 gmii_rx_buffer，用于在较低速率下对

发送和接收数据进行缓存和速率匹配。

gmii_tx_buffer 模块负责在 10Mbps和 100Mbps模式下，对发送数据进行适

配。它根据时钟和复位信号，以及速度模式，缓存来自 GMII 接口的发送数据

gmii_tx_en 和 gmii_txd，并输出适配后的数据 e10_100_tx_en 和 e10_100_txd。

gmii_rx_buffer 模块则负责接收方向的速率适配，处理 GMII 接口的接收数据

gmii_rx_dv和 gmii_rxd，输出适配后的数据 e10_100_rx_dv和 e10_100_rxd。

此外，模块通过信号 eth_10_100m_en（由 eth_100m_en和 eth_10m_en的或

运算得到）来指示当前是否处于 10Mbps或 100Mbps模式，用于控制数据的仲裁

逻辑。在这种模式下，仲裁后的发送和接收信号从速率适配模块获取，否则直接

从 GMII接口获取。

通过上述逻辑，gmii_arbi 模块实现了对不同速率的以太网数据进行仲裁和

适配，确保在各种速率下，MAC层都能正确地发送和接收数据。模块根据速度

和链路状态动态调整数据路径，并在速度变化时对MAC层进行复位，保证系统

的稳定性和可靠性。

这个模块对于以太网通信的实现非常重要，它能够根据不同的网络速度，灵

活地调整数据传输方式，确保数据的完整性和有效性。同时，通过对复位信号的

控制，模块能够在链路状态变化时，及时地对MAC层进行复位，防止错误数据

的产生。这些特性使得 gmii_arbi模块在以太网系统中扮演了关键的角色，为上

层的MAC层提供了稳定可靠的通信接口。

9.3.4mac_test模块讲解

mac_test模块的源码如下：

1.
//
////////////////////

2. //Module Name : mac_top
3. //Description :
4. //
5. ///

/////////////////////

6. //`define TEST_SPEED

7. ` timescale 1 ns/ 1 ns

8. module mac_test
9. (
10. input rst_n ,
11. input [31:0] pack_total_len,
12. input gmii_tx_clk ,
13. input gmii_rx_clk ,
14. input gmii_rx_dv,
15. input [7:0] gmii_rxd,
16. output reg gmii_tx_en,
17. output reg [7:0] gmii_txd,
18. output reg [15:0] udp_send_data_length,
19. output write_sel,

20. output udp_rec_data_valid,
21. output al_full,
22. output emp_sum,
23. output checksum_wr,
24. output [4:0] use_rd,
25. output [7:0] udp_rec_ram_rdata ,
26. output [10:0] udp_rec_ram_read_addr ,
27. output [15:0] udp_rec_data_length
28.);
29.

30. localparam UDP_WIDTH = 32 ;
31. localparam UDP_DEPTH = 5 ;
32.

33.

34. reg gmii_rx_dv_d0 ;
35. reg [7:0] gmii_rxd_d0 ;
36. wire gmii_tx_en_tmp ;
37. wire [7:0] gmii_txd_tmp ;
38.

39. reg [7:0] ram_wr_data ;
40. reg ram_wr_en ;
41. wire udp_ram_data_req ;
42. reg [15:0] udp_send_data_length ;
43.

44. wire [7:0] tx_ram_wr_data ;
45. wire tx_ram_wr_en ;
46. wire udp_tx_req ;
47. wire arp_request_req ;
48. wire mac_send_end ;
49. reg write_end ;
50.

51. wire [7:0] udp_rec_ram_rdata ;
52. reg [10:0] udp_rec_ram_read_addr ;
53. wire [15:0] udp_rec_data_length ;
54. wire udp_rec_data_valid ;
55.

56. wire udp_tx_end ;
57. wire almost_full ;
58.

59. reg udp_ram_wr_en ;
60. reg udp_write_end ;
61. wire write_ram_end ;
62. reg [31:0] wait_cnt ;
63. reg [UDP_WIDTH-1:0] udp_data [UDP_DEPTH-1:0];

64.

65. reg [4:0] i;
66. reg [1:0] j ;
67.

68. reg write_sel ;
69.

70. wire button_negedge ;
71.

72. wire mac_not_exist ;
73. wire arp_found ;
74.

75. parameter IDLE = 9'b000_000_001 ;

76. parameter ARP_REQ = 9' b000_000_010 ;

77. parameter ARP_SEND = 9'b000_000_100 ;

78. parameter ARP_WAIT = 9' b000_001_000 ;

79. parameter GEN_REQ = 9'b000_010_000 ;

80. parameter WRITE_RAM = 9' b000_100_000 ;

81. parameter SEND = 9'b001_000_000 ;

82. parameter WAIT = 9' b010_000_000 ;

83. parameter CHECK_ARP = 9'b100_000_000 ;
84.

85.

86. reg [8:0] state ;
87. reg [8:0] next_state ;
88. reg [15:0] ram_cnt ;
89. reg almost_full_d0 ;
90. reg almost_full_d1 ;
91. always @(posedge gmii_tx_clk or negedge rst_n)
92. begin
93. if (~rst_n)
94. state <= IDLE ;
95. else
96. state <= next_state ;
97. end
98.

99. always @(*)
100. begin
101. case(state)
102. IDLE :
103. begin

104. if (wait_cnt == pack_total_len) //1s
105. next_state <= ARP_REQ ;
106. else
107. next_state <= IDLE ;
108. end
109.

110. ARP_REQ :
111. next_state <= ARP_SEND ;
112. ARP_SEND :
113. begin
114. if (mac_send_end)
115. next_state <= ARP_WAIT ;
116. else
117. next_state <= ARP_SEND ;
118. end
119. ARP_WAIT :
120. begin
121. if (arp_found)
122. next_state <= WAIT ;
123. else if (wait_cnt == pack_total_len)
124. next_state <= ARP_REQ ;
125. else
126. next_state <= ARP_WAIT ;
127. end
128. GEN_REQ :
129. begin
130. if (udp_ram_data_req)
131. next_state <= WRITE_RAM ;
132. else
133. next_state <= GEN_REQ ;
134. end
135. WRITE_RAM :
136. begin
137. `ifdef TEST_SPEED
138. if (ram_cnt == udp_send_data_length - 1)
139. `else
140. if (write_ram_end)
141. `endif
142. next_state <= WAIT ;
143. else
144. next_state <= WRITE_RAM ;
145. end
146.

147. SEND :

148. begin
149. if (udp_tx_end)
150. next_state <= WAIT ;
151. else
152. next_state <= SEND ;
153. end
154.

155. WAIT :
156. begin
157. `ifdef TEST_SPEED

158. if (wait_cnt == 32' d90) //frame gap

159. `else
160. if (wait_cnt == pack_total_len) //1s

161. ` endif

162. next_state <= CHECK_ARP ;
163. else
164. next_state <= WAIT ;
165. end
166. CHECK_ARP :
167. begin
168. if (mac_not_exist)
169. next_state <= ARP_REQ ;
170. else if (almost_full_d1)
171. next_state <= CHECK_ARP ;
172. else
173. next_state <= GEN_REQ ;
174. end
175. default :
176. next_state <= IDLE ;
177. endcase
178. end
179.

180.

181. assign write_ram_end = (write_sel)? udp_write_end : write
_end ;

182. assign tx_ram_wr_data = (write_sel)? udp_rec_ram_rdata : r
am_wr_data ;

183. assign tx_ram_wr_en = (write_sel)? udp_ram_wr_en : ram_w
r_en ;

184.

185.

186. always@(posedge gmii_rx_clk or negedge rst_n)

187. begin
188. if(rst_n == 1'b0)
189. begin

190. gmii_rx_dv_d0 <= 1' b0 ;

191. gmii_rxd_d0 <= 8'd0 ;
192. end
193. else
194. begin
195. gmii_rx_dv_d0 <= gmii_rx_dv ;
196. gmii_rxd_d0 <= gmii_rxd ;
197. end
198. end
199.

200. always@(posedge gmii_tx_clk or negedge rst_n)
201. begin

202. if(rst_n == 1' b0)

203. begin
204. gmii_tx_en <= 1'b0 ;

205. gmii_txd <= 8' d0 ;

206. end
207. else
208. begin
209. gmii_tx_en <= gmii_tx_en_tmp ;
210. gmii_txd <= gmii_txd_tmp ;
211. end
212. end
213.

214.

215. mac_top mac_top0
216. (
217. .gmii_tx_clk (gmii_tx_clk) ,
218. .gmii_rx_clk (gmii_rx_clk) ,
219. .rst_n (rst_n) ,
220.

221. .source_mac_addr (48'h00_0a_35_01_fe_c0) ,
//source mac address

222. .TTL (8' h80),

223. .source_ip_addr (32'hc0a80002),

224. .destination_ip_addr (32' hc0a80003),

225. .udp_send_source_port (16'h1f90),

226. .udp_send_destination_port (16' h1f90),

227.

228. .ram_wr_data (tx_ram_wr_data) ,
229. .ram_wr_en (tx_ram_wr_en),
230. .udp_ram_data_req (udp_ram_data_req),
231. .udp_send_data_length (udp_send_data_length),
232. .udp_tx_end (udp_tx_end),
233. .almost_full (almost_full),
234.

235. .udp_tx_req (udp_tx_req),
236. .arp_request_req (arp_request_req),
237.

238. .mac_send_end (mac_send_end),
239. .mac_data_valid (gmii_tx_en_tmp),
240. .mac_tx_data (gmii_txd_tmp),
241. .rx_dv (gmii_rx_dv_d0),
242. .mac_rx_datain (gmii_rxd_d0),
243.

244. .udp_rec_ram_rdata (udp_rec_ram_rdata),
245. .udp_rec_ram_read_addr (udp_rec_ram_read_addr),
246. .udp_rec_data_length (udp_rec_data_length),
247.

248. .udp_rec_data_valid (udp_rec_data_valid),
249. .arp_found (arp_found),
250. .mac_not_exist (mac_not_exist),
251. .al_full (al_full),
252. .emp_sum (emp_sum),
253. .checksum_wr(checksum_wr),
254. .use_rd (use_rd)
255.) ;
256.

257.

258.

259. always @(*)
260. begin
261. udp_data[0] <={"H","E","L","L"};
262. udp_data[1] <={"O"," ","A","L"};
263. udp_data[2] <={"I","N","X"," "};
264. udp_data[3] <={"H","E","I","J"};
265. udp_data[4] <={"I","N"," ","\n"};
266.

267. end

268.

269. //reg almost_full_d0 ;
270. //reg almost_full_d1 ;
271.

272. always@(posedge gmii_rx_clk or negedge rst_n)
273. begin
274. if(rst_n == 1'b0)
275. begin

276. almost_full_d0 <= 1' b0 ;

277. almost_full_d1 <= 1'b0 ;
278. end
279. else
280. begin
281. almost_full_d0 <= almost_full ;
282. almost_full_d1 <= almost_full_d0 ;
283. end
284. end
285.

286. always@(posedge gmii_rx_clk or negedge rst_n)
287. begin

288. if(rst_n == 1' b0)

289. udp_send_data_length <= 16'd0 ;
290. else if (write_sel)
291. udp_send_data_length <= udp_rec_data_length - 8 ;
292. else
293. `ifdef TEST_SPEED

294. udp_send_data_length <= 16' d1000 ;

295. `else
296. udp_send_data_length <= 4*UDP_DEPTH ;
297. //udp_send_data_length <=16'd20 ;

298. ` endif

299. end
300.

301.

302. always@(posedge gmii_tx_clk or negedge rst_n)
303. begin
304. if(rst_n == 1'b0)

305. write_sel <= 1' b0 ;

306. else if (state == WAIT)

307. begin
308. if (udp_rec_data_valid)
309. write_sel <= 1'b1 ;
310. else

311. write_sel <= 1' b0 ;

312. end
313. end
314.

315. assign udp_tx_req = (state == GEN_REQ) ;
316. assign arp_request_req = (state == ARP_REQ) ;
317.

318. always@(posedge gmii_tx_clk or negedge rst_n)
319. begin
320. if(rst_n == 1'b0)
321. wait_cnt <= 0 ;
322. else if ((state==IDLE||state == WAIT || state == ARP_WAIT) &

& state != next_state)

323. wait_cnt <= 0 ;
324. else if (state==IDLE||state == WAIT || state == ARP_WAIT)

325. wait_cnt <= wait_cnt + 1' b1 ;

326. else
327. wait_cnt <= 0 ;
328. end
329.

330.

331. `ifdef TEST_SPEED
332. /***/
333. //Test ethernet speed
334. //reg [15:0] ram_cnt ;
335. always@(posedge gmii_tx_clk or negedge rst_n)
336. begin
337. if(rst_n == 1'b0)
338. ram_cnt <= 11'd0 ;
339. else if (state == WRITE_RAM)
340. ram_cnt <= ram_cnt + 1'b1 ;
341. else
342. ram_cnt <= 11'd0 ;
343. end
344.

345. always@(posedge gmii_tx_clk or negedge rst_n)
346. begin
347. if(rst_n == 1'b0)

348. ram_wr_en <= 1'b0 ;
349. else if (state == WRITE_RAM)
350. ram_wr_en <= 1'b1 ;
351. else
352. ram_wr_en <= 1'b0 ;
353. end
354.

355.

356. always@(posedge gmii_tx_clk or negedge rst_n)
357. begin
358. if(rst_n == 1'b0)
359. ram_wr_data <= 8'd0 ;
360. else if (state == WRITE_RAM)
361. ram_wr_data <= ram_cnt[7:0] ;
362. else
363. ram_wr_data <= 8'd0 ;
364. end
365. /***/
366. `else
367. always@(posedge gmii_tx_clk or negedge rst_n)
368. begin
369. if(rst_n == 1'b0)
370. begin

371. write_end <= 1' b0;

372. ram_wr_data <= 0;
373. ram_wr_en <= 0 ;
374. i <= 0 ;
375. j <= 0 ;
376. end
377. else if (state == WRITE_RAM)
378. begin
379. if(i == 5)
380. begin
381. ram_wr_en <=1'b0;

382. write_end <= 1' b1;

383. end
384. else
385. begin
386. ram_wr_en <= 1'b1 ;

387. write_end <= 1' b0 ;

388. j <= j + 1'b1 ;

389. case(j)

390. 2' d0 : ram_wr_data <= udp_data[i][31 : 24] ;

391. 2'd1 : ram_wr_data <= udp_data[i][23:16] ;

392. 2' d2 : ram_wr_data <= udp_data[i][15 : 8] ;

393. 2'd3 : ram_wr_data <= udp_data[i][7:0] ;

394. default : ram_wr_data <= 8' h00 ;

395. endcase
396.

397. if (j == 3)
398. begin
399. j <= 0 ;
400. i <= i + 1'b1;
401. end
402. end
403. end
404. else
405. begin

406. write_end <= 1' b0;

407. ram_wr_data <= 0;
408. ram_wr_en <= 0 ;
409. i <= 0 ;
410. j <= 0 ;
411. end
412. end
413. `endif
414.

415. //send udp received data to udp tx ram
416. always@(posedge gmii_tx_clk or negedge rst_n)
417. begin
418. if(rst_n == 1'b0)
419. udp_rec_ram_read_addr <= 11'd0 ;
420. else if (state == WRITE_RAM)
421. udp_rec_ram_read_addr <= udp_rec_ram_read_addr + 1'b1 ;
422. else
423. udp_rec_ram_read_addr <= 11'd0 ;
424. end
425.

426. always@(posedge gmii_tx_clk or negedge rst_n)
427. begin
428. if(rst_n == 1'b0)

429. udp_ram_wr_en <= 1'b0 ;
430. else if (state == WRITE_RAM && udp_rec_ram_read_addr < udp_r

ec_data_length - 8)

431. udp_ram_wr_en <= 1'b1 ;
432. else
433. udp_ram_wr_en <= 1'b0 ;
434. end
435.

436. always@(posedge gmii_tx_clk or negedge rst_n)
437. begin
438. if(rst_n == 1'b0)
439. udp_write_end <= 1'b0 ;
440. else if (state == WRITE_RAM && udp_rec_ram_read_addr == udp_

rec_data_length - 8)

441. udp_write_end <= 1'b1 ;
442. else
443. udp_write_end <= 1'b0 ;
444. end
445.

446.

447. endmodule
448.

449.

首先，模块的输入和输出端口定义了与 GMII 接口的交互信号，以及一些用

于控制和数据传输的信号。输入端口包括：

rst_n：复位信号，低电平有效。

pack_total_len：用于设定等待时间或数据包总长度的 32位信号。

gmii_tx_clk和 gmii_rx_clk：GMII 接口的发送和接收时钟信号。

gmii_rx_dv和 gmii_rxd：GMII 接口的接收数据有效信号和接收数据总线。

输出端口包括：

gmii_tx_en和 gmii_txd：GMII 接口的发送使能信号和发送数据总线。

udp_send_data_length：UDP发送数据的长度。

write_sel：写入选择信号，用于选择数据源。

udp_rec_data_valid：UDP接收数据有效信号。

其他信号如 al_full、emp_sum、checksum_wr、use_rd、udp_rec_ram_rdata、

udp_rec_ram_read_addr、udp_rec_data_length，用于内部数据处理和状态指示。

模块内部首先定义了一些局部参数和寄存器，包括 UDP数据的宽度和深度，

用于存储发送的数据内容。接下来，定义了一些用于数据暂存和控制的寄存器，

如 gmii_rx_dv_d0、gmii_rxd_d0、ram_wr_data、ram_wr_en等。

模块通过实例化一个 mac_top 子模块，完成 MAC层的主要功能。mac_top

模块负责处理 ARP请求、UDP数据的发送和接收，以及与 GMII 接口的具体交

互。

在主模块中，定义了一个状态机，用于控制数据发送和接收的流程。状态机

的各个状态包括：

IDLE：空闲状态，等待计时器达到预设的 pack_total_len，然后进入 ARP请

求状态。

ARP_REQ：发送 ARP请求的状态，触发 ARP请求的发送。

ARP_SEND：ARP请求发送中，等待发送完成后进入 ARP等待状态。

ARP_WAIT：等待 ARP响应，如果在等待时间内收到 ARP响应，则进入等

待状态，否则重新发送 ARP请求。

GEN_REQ：生成 UDP发送请求的状态，等待 UDP模块准备好数据传输。

WRITE_RAM：将要发送的数据写入 RAM的状态，根据不同的测试模式，

可能是生成测试数据或发送接收到的 UDP数据。

SEND：数据发送状态，等待 UDP数据发送完成。

WAIT：发送完成后的等待状态，等待一段时间后检查 ARP表。

CHECK_ARP：检查 ARP表中是否存在目标MAC地址，如果不存在，则重

新发送 ARP请求。

在状态机的控制下，模块完成了数据的发送和接收流程。首先，在空闲状态

下，模块等待计时器达到设定值，然后发送 ARP请求，尝试获取目标 IP地址对

应的MAC地址。在成功获取MAC地址后，模块生成 UDP发送请求，将数据写

入发送缓存。如果处于测试模式，模块会生成固定的测试数据；如果有接收到的

UDP数据需要转发，模块会将接收到的数据写入发送缓存。

在数据写入完成后，模块进入发送状态，等待 UDP数据发送完成。发送完

成后，进入等待状态，等待一段时间后再次检查 ARP表，以确保目标MAC地

址仍然有效。如果目标MAC地址失效，模块会重新发送 ARP请求。

模块还处理了 GMII 接口的发送和接收信号的同步和暂存。通过对

gmii_rx_dv、gmii_rxd、gmii_tx_en、gmii_txd信号进行寄存器同步，确保数据在

不同时钟域之间的正确传输。

在 UDP数据处理方面，模块定义了一个 UDP数据数组 udp_data，用于存储

要发送的测试数据。在非测试模式下，模块会根据接收到的 UDP数据长度，动

态调整发送的数据长度 udp_send_data_length。

模块还通过一些控制信号，如 udp_tx_req、arp_request_req，与 mac_top 子

模块进行通信，触发 ARP请求和 UDP数据发送。

计时器 wait_cnt用于在不同状态之间进行时间控制，如在空闲状态下等待一

定时间再发送 ARP请求，在等待状态下等待一定时间再检查 ARP表。

模块还定义了一些条件编译指令，如 ifdefTEST_SPEED，用于控制测试模式

下的行为。在测试速度时，模块会生成大量的数据用于发送，以测试以太网的传

输速度。

在发送数据时，模块根据当前的状态，控制数据写入发送缓存的流程。在

WRITE_RAM 状态下，模块会根据数据计数器 ram_cnt，将数据写入发送缓存

ram_wr_data，并控制写使能信号 ram_wr_en。

对于接收到的 UDP数据，模块在需要转发时，会将数据从接收缓存读出，

写入发送缓存，以实现数据的转发功能。

总体来说，这个 mac_test模块通过状态机的控制，实现了以太网MAC层的

ARP请求、UDP数据的发送和接收、数据缓存的读写，以及与 GMII 接口的交

互。模块的设计考虑了测试模式和正常工作模式下的不同需求，具有一定的灵活

性和可扩展性。

9.3.5power_on_rst模块讲解

power_on_rst模块源码如下：

1. `timescale 1ns / 1ps
2.

3. module power_on_rst
4. #(
5. parameter CLK_FRE = 50,
6. parameter DELAY_MS = 50
7.)
8. (

9. input clk,
10. input rst_n,
11.

12. output power_on_rstn
13.);
14.

15. reg [31:0] rst_cnt ;
16. localparam RESET_DELAY = CLK_FRE*1000*DELAY_MS ; //
17.

18. always @(posedge clk or negedge rst_n)
19. begin
20. if (!rst_n)
21. rst_cnt <= 32'd0 ;
22. else if (rst_cnt < RESET_DELAY) //50ms
23. rst_cnt <= rst_cnt + 1'b1 ;
24. else
25. rst_cnt <= rst_cnt ;
26. end
27.

28. assign power_on_rstn = (rst_cnt < RESET_DELAY)? 1'b0 : 1'b1 ;
29.

30. endmodule

模块采用参数化设计，具有灵活性，能够适应不同的时钟频率和延时需求。

参数 CLK_FRE代表时钟频率，默认值为 50MHz，即输入时钟 clk的频率。参数

DELAY_MS表示延时时间，默认值为 50毫秒，即复位信号保持低电平的持续时

间。通过调整这两个参数，可以根据系统需求设置不同的复位延时。

在模块内部，定义了一个 32位的寄存器 rst_cnt作为计数器，用于计数时钟

周期数。同时，计算出一个局部参数 RESET_DELAY，表示需要延时的总时钟周

期数，计算方式为 RESET_DELAY=CLK_FRE*1000*DELAY_MS。这里，

CLK_FRE 以 MHz 为单位，DELAY_MS以毫秒为单位，乘以 1000 是将毫秒转

换为微秒，再乘以时钟频率，得到总的时钟周期数。

计数器的工作机制是在每个时钟上升沿，根据复位信号 rst_n的状态，决定

计数器的行为。当 rst_n为低电平时，表示外部复位激活，计数器 rst_cnt被清零。

当 rst_n为高电平且 rst_cnt小于 RESET_DELAY时，计数器在每个时钟周期递增

1。当计数器达到或超过 RESET_DELAY时，计数器保持当前值不变，不再递增。

输出的复位信号 power_on_rstn 根据计数器的值确定。当 rst_cnt 小于

RESET_DELAY时，power_on_rstn为低电平，表示系统仍处于复位状态。当 rst_cnt

达到或超过 RESET_DELAY时，power_on_rstn变为高电平，表示复位结束，系

统开始正常运行。通过这种方式，模块实现了在上电或复位后，延时一段指定的

时间再释放复位信号的功能。

这个 power_on_rst 模块对于需要在上电后等待电源和时钟稳定的系统非常

有用，可以避免因电源抖动或时钟不稳定导致的系统异常行为。通过参数化的设

计，模块可以灵活地适应不同的系统要求，确保系统在合适的时机进入工作状态，

提升整体的可靠性。

9.5 实验现象

用网线连接 PT2T70H 开发板网口和 PC 端口；

设置接收端（PC 端）IP 地址为 192.168.0.3，开发板的 IP 地址为

192.168.0.2；

通过命令提示符，输入 arp -a，可以查到 IP：192.168.0.2，MAC：

00_0a_35_01_fe_c0; 并且可通过 ping 验证数据链路是否正常连接以及数据传

输是否正常。

10.PCIE通信测试实验例程

10.1实验目的

完成 PCIE 通信测试。

10.2实验原理

PG2L100H 集成内置了线速率高达 6.6Gbps 高速串行接口模块，即 HSSTLP。

PG2L100H 开发板提供一个 PCIe x4 接口，PCIE 卡的外形尺寸符合标准 PCIe 卡

电气规范要求，可直接在普通 PC 的 x4 PCIe 插槽上使用。

10.2.1 PCIE简介

PCIE IP 符合 PCI Express® Base Specification Revision 2.1[8]协议和

PHY Interface for the PCI ExpressTM Architecture Version 2.00[12]（数

据通路扩展为 32 bits）协议。

功能特性 特性说明

支持配置 Device Type

PCI Express Endpoint

Legacy PCI Express Endpoint

Root Port of PCI Express Root Complex

支持配置 Max Link Width

x1

x2

x4

支持配置 Max Link Speed
2.5GT/s

5GT/s

支持 Max Link Width 设置为

x1 时可选 LPLL

支持 100MHz Reference Clk -

支持 Upconfigure Capable -

支持 AXI-Stream Slave 个数选择

1

2

3

支持 Debug 接口 -

支持通过 Apb 动态配置 PCIe

Configuration Space

支 持 Receive Queue

Management
-

支持 Lane Reversal -

支持 Force No Scrambling -

支持配置 ID

支持配置 Vendor ID

支持配置 Device ID

支持配置 Revision ID

PCI Express Endpoint、Legacy PCI Express

Endpoint 支持配置 Subsystem Vendor ID

PCI Express Endpoint、Legacy PCI Express

Endpoint 支持配置 Subsystem ID

支持配置 Classcode

支持 BAR 配置

PCI Express Endpoint、Legacy PCI Express

Endpoint 支持配置 6个 BAR

Root Port of PCI Express Root Complex 仅支

持配置 BAR0、BAR1

PCI Express Endpoint 支持配置为 Memory BAR

Legacy PCI Express Endpoint、Root Port of PCI

Express Root Complex 支持配置为 Memory、IO

BAR

支持 32bit BAR

32bit BAR 支持配置大小为 256 Byte -2G Byte

BAR0、BAR2、BAR4 支持 64bit BAR

64bit BAR 支持 Prefetchable

64bit BAR 支持配置大小为 256 Byte -8E Byte

支持 Expansion ROM BAR

Expansion ROM BAR 支持配置大小为 2K Byte

-16M Byte

支持配置 Max Payload Size

128 Byte

256 Byte

512 Byte

1024 Byte

支持配置 Extended Tag Field

与 Extended Tag Default
-

支持 Atomic 事务 -

RC 时 支 持 设 置 Read

Completion Boundary
-

支持配置 Target Link Speed -

RC 时支持设置 CRS Software

Visibility
-

支 持 设 置 ECRC Generation

Capable
-

默认使能 ECRC Check Capable -

支持 INIT 中断
PCI Express Endpoint、Legacy PCI Express

Endpoint 只支持 INTA

Root Port of PCI Express Root Complex 支持

INTA、INTB、INTC、INTD

支持 MSI 中断

支持 64-bit Address MSI 中断

支持 Multiple Message Capable：1、2、4、8、

16、32 个 Vectors

支持 Per Vector Masking Capable

支持 MSIx 中断
支持配置 Table Size 、Offset 与 BIR

支持配置 PBA Offset 与 BIR

注：“-”表示无该项说明。

10.3工程说明

10.3.1 安装 PCIE IP核

PDS 安装后，需手动添加 PCIE IP，请按以下步骤完成：

PCIE IP 文件：6_IP_setup_packet\ips2tl_pcie_gen2_v1_0c.iar

IP 安装步骤：请查看 工具使用篇\03_IP 核安装与查看用户指南

10.3.2 PCIE参考设计例程

打开 PDS 软件，新建工程 pcie_test，点开如下图标，打开 IP Compiler；

选择 PCIE IP，取名，然后点击 Customize；

在 PCIE 设置界面中：根据开发板配置 lane 数，可选择 X2，配置参考时钟，

可参考下图：

需要注意的是，需要勾选上 Enable Lane Reversal，否则会导致 PCIE 实验

失败。

其他设置可保持默认，点击 Generate 生成 PCIE IP。

关闭本工程，按此路径打开 Example 工程：

Xxxxx\pcie_test\ipcore\pcie_test\pnr\example_design

主要:xxxx 是自己电脑的路径，后面的 pcie_test 及其后面的路径是固定的。

按照开发板管脚，修改相关管脚约束：

注意，txd 和 rxd 是串口。txp[0]，txp[1]，rxp[0]，rxp[1]等差分信号需

要在.fdc 文件进行约束，具体约束请参考《UG050008_Titan2 系列 FPGA 高速串

行收发器（HSSTHP）用户指南_V1.4》。

可按以下方式查看 IP 核的用户指南，了解 Example 模块组成；

10.4实验现象

将程序固化到 flash 内，把开发板插入电脑 PCIE 卡槽，开机。打开设备管

理器，可识别到 PCIE 设备。

Win 下能弹出该设备即可。

	1.LED流水灯实验例程
	1.1PG2T70H开发板简介
	1.2实验目的
	1.3实验原理
	1.4实验源码设计
	1.4.1文件头设计
	1.4.2设计module
	1.4.3完整的Module（不含注释）
	1.4.4硬件管脚分配

	1.5实验现象

	2.键控流水灯实验例程
	2.1PG2T70H开发板简介
	2.2实验目的
	2.3实验原理
	2.3.1按键控制模块功能

	2.3.2按键消抖模块
	2.3.3LED控制模块功能

	2.4实验源码设计
	2.4.1顶层文件源码
	2.4.2按键控制模块
	2.4.3按键消抖模块
	2.4.4LED控制模块

	2.5实验现象

	3.串口收发实验例程
	3.1PG2T70H开发板简介
	3.2实验要求
	3.3实验原理
	3.3.1串口原理
	3.3.2串口传输步骤
	3.3.3串口发送字符

	3.4实验源码设计
	3.4.1串口发送模块设计
	3.4.2串口接收模块设计
	3.4.3串口发送控制模块设计
	3.4.4串口实验顶层模块设计

	3.5实验现象

	4_5.HDMI实验例程说明
	4_5.1PG2T70H开发板简介
	4_5.2实验目的
	4_5.3实验原理
	4_5.3.1显示原理
	4_5.3.2HDMI_PHY配置

	4_5.4实验源码设计
	4_5.5实验现象

	6.DDR3读写实验例程
	6.1PG2T70H开发板简介
	6.2实验要求
	6.3DDR3控制器简介
	6.4实验设计
	6.4.1安装DDR3IP核
	6.4.2DDR3读写Example工程

	6.5实验现象

	7_8.光纤通信测试实验例程
	7_8.1PG2T70H开发板简介
	7_8.2实验要求
	7_8.3HSST简介
	7_8.4实验设计
	7_8.4.1安装HSSTIP核
	7_8.4.2光纤通信测试例程

	7_8.5实验现象

	9.以太网传输实验例程
	9.1实验目的
	9.2实验原理
	9.3工程说明
	9.3.1顶层代码讲解
	9.3.2util_gmii_to_rgmii模块讲解
	9.3.3gmii_arbi模块讲解
	9.3.4mac_test模块讲解
	9.3.5power_on_rst模块讲解

	9.5 实验现象

	10.PCIE通信测试实验例程
	10.1实验目的
	10.2实验原理
	10.2.1 PCIE简介

	10.3工程说明
	10.3.1 安装PCIE IP核
	10.3.2 PCIE参考设计例程

	10.4实验现象

