PG2T70H H &tk 5256 F8 5 Fit

HRFMIEA: vi.1
I IA]: 2025-07-31

wEl: YN NREE B R F
HIRMAE: 17665247134

qq Bf: 808770961

HWEEE: DR S

HE4E: support@meyesemi. com

ANFHE: www. meyesemi. com

T~

@ “
Lt tal
I' ,:’.'.-‘ a

_ BARY
oy i
.{"-‘B‘Jl\ﬁﬁﬂﬁﬂi'.,. 5
i TN sol
5

W ST
OREREA o

—_—

mailto:support@meyesemi.com
http://www.meyesemi.com

L. LD KA S R 4
1.1 PG2TTOH JF RN « e e 4
Lo S H B 4
L3 S 4
L4 SR T 6
L D I R 10

. B KT S R . 11
2.1 PG2TTOH JFARAIATAY oo 11
2. 2 B H B o 11
2. 3 R R I 11
2.3.2 B BIRE 12
R A L 13
2. B I I G 18

S R I R S R . 19
3. IPG2TTOH RIS e 19
3. 2 R T R . 19
3. S A 19
3 A S T . 22
3 D I G 39

4 5 HDMT S R B . o 43
4 5. 1PG2TTOH R MM oo e 43
4D 2 T H I 43
TR i 43
4B A R T 49
4 B D I R 50

6. DDR3 T 5 S B R . e 52
6. IPG2TTOH FF RIS < o oo e 52

B. 2 I TR L 52

6. 3DDRS FE B AT« e et e 52

6. 4 L Tl L 53
B. 5 I I 59
7 8 M BRI IR . 60
7 8. 1PG2TTOH R AT AT e e 60
T 8. 2 B B R 60
7 8. BHSST Al o et 60
(T . s 61
T 8 S I R 66
) N S M R 67
0. L B H T 67
0. 2 S B T 67
0. 3 AR U 67
0. 5 I R . 110
10. PCIE S SRRSO IR . 111
10, LS) o 111
10, 2 S B 111
10. 3 LR R 114

10. 4 S I 119

1. LED 7K KT SEI& BiF2

1.1 PG2T70H A& WE

PG2T70H J %A 8 NF ' LED 4T (LED1~8) , FPGA %! &y B It %
MIF LED 4T =47 (IS IE BB “PG2T70H FF R AR B4R B FH1)

1.2 LR E/BY
4] 8 A LED T H2 U e v p s AR R
1.3 SCIGREEE

WE I, 2y, BRI A KSR N %A A
1 /NEF=60 43 81=3600 Fb, HETEFEES) 1 /ANEF, FREFBES) 3600 VX;

B ML B R TR 3 5 A T SR T, ORI 22 TP 5 R e],
RATEHFRZ AR (T .

FEE 5 22 50 TPl ST B B AR IR 5 A IR SR R AR
1
f=:

T
PG2T70H #X b Bt 9 — A 50MHz F1—/> 27MHz [dt iR B AL i 4 24

#| PG2T70H;

LI S

P LED 53 K 75 2245 1) 1O i th 1) v HL -~ RITAT (s BT iR (IR T HEK),
JREERE R

USER_LED1 | RIGRAOK_ DI3IN 6 } [
USER_LED2] | RIGRALOK _D14E0u G
USER_LED3 [RLGRALOK mﬁia}w_a
USER_LED4 | RIGAAOK___ D16 G
USER LEDS R3panl0K D9 "Hw G
USER_LED6 [— Réwal0k___ D10
USER_LEDT | ROmalOK___DI2EIN G
USER_LEDS | RE aan 10K D17KW G

| P 1

24 LED 7K 0.5s 5£,0.5s K, 7 B2 10 1R 0.5s 1 HLF,0.55 {KHL T
JEIRAE AL,
BRI

0.5s 0.5s 0.5s
“ 088 0.55 0.5s

{8 A 50MHz A A of, 5 8 JE 910 20ns (FE verilog it H i1 s
(T E B BB AR B — B, BRI B AN B A B e IR fS AT 1 T AR
FTHEE 21k 2 /0 5 TS BT SRR

'
A

0. 5s = 25000000%20ns = 25000000 X Tsomuz:

10 % HPIRAS RA P 188 05 FRATAT DS H—/ s, 1269 25000000
AN R B AR AN [F] LED 5.

1.4 SEIRERSIEIT
1.4.1 3C#skigit

£ module Z RTAINSCAFk, Ak REELEA: AR, &, KE, B
W4, TR, B4, Birgfk, EDA THRA), BEHR, mAHR (&
B IR) SRR RUSAT FU [R] A 5E S

1. “timescale 1ns / 1ps

2. SIIIIIIIIIII SIS S
/17177777 77/777777

20. //77777777777777/77 77777777 777777777777777777777777777777/7/7777/
/1777777 77/77777
21.

22. ~define UD #1
‘timescalelns/1ps R EAE 2 Ins, ok 1ps;

“defineUD#1 7€ L UD Kin#l; #1 (U EER, RRER—MIERE, 45
& E—2 1B AR INER] 1ns;

1.4.2 &1t module

1. module led_test(
2. input clk,

input rstn,

output [7:0] led

28 O Ll ©°

);
I BARRE S FR T module B ZEFIFEAY, module 8% I 75 ZE A\ N A5

IR AL, Z JEAEX module BEAT HARMIE# B B S E I A A«
BT, e m—MME A R R A5
A module I 75 25 SR A5 5 AN LI A N IR A1 ST AL B AT, a2
4] LED (155K, MESS0HP #k £ 4L 8 A~ LED, MUt 8bit A7 % (15 5
L A LN = i # 25 000 000 , I
24 999 999=25"b1 0111 1101 0111 1000 0011 1111;8f LLit% 8% 967 56 A 25 fif
BRI, A 17 45 5 B0 g o AR 5] 20 T 2 e 1) A S B 0 A

1.

2. always @(posedge clk)

S begin

4. if(!rstn)

o led _light_cnt <= “UD 26'do;

6. else if(led_light cnt == 26'd24 999 999)

1. led light_cnt <= “UD 26'do;

8. else

9. led_light_cnt <= "UD led_light cnt + 26'd1;
10. end

M EER TR 25'd24 999 999 B, THEGE R T M 0~26'd2499 9999
(R od B B, O KT 25°d25 000 000xTelk; A8 A4 NI 4d)y 50MHz, Ft
CASE T 38 R v 08 2 0.5s:

FEFR T I [RIZIBE b 0F LED BPIRZASHEATAZSE, LAE B4 LED KK K
H

led light cnt fITHESJE A 0.5s, #7E led light ent FEU—/ £ARAFSE LED
RS BRI AT 58 BCRERR 0.5sLED SR &AM 1T LED SATK RAH AR
&, TEWE AL bR F A7 dn AT B A R A s

always @(posedge clk)
begin
if(!rstn)
led_status <= "UD 8'b0000 _0001;
else if(led_light cnt == 25'd24_999 999)

28 O Ball ©° IS =

led status <= "UD {led status[6:0],led status[7]};
end

© Bl 5

10. assign led = led_status;

1.4.3 52EH Module (FE3F8)

1. module led_test(

2. input clk,

3. input rstn,

4.

B output [7:0] led

6.);

7.

8.

9. //==s=======s==s=======sss=sss=ss==sss=ssssssssssssssssssssssmssas
10. //reg and wire

11.

12. reg [25:0] led_light_cnt = 26'de 5
13. reg [7:0] led status = 8'b0000 0001 ;
14.

15. //time counter

16. always @(posedge clk)

17. begin

18. if(!rstn)

19. led light _cnt <= “UD 26'do;

20. else if(led_light_cnt == 26'd24_999 999)
21. led light _cnt <= “UD 26'do;

22. else

23. led_light_cnt <= “UD led_light_cnt + 26'd1;
24. end

25.

26. //led status change

27. always @(posedge clk)

28. begin

29. if(!rstn)

30. led status <= "UD 8'b0o00o 0001;

31. else if(led_light_cnt == 25'd24_999 999)
32. led status <= “UD {led_status[6:0],led status[7]};
33. end

34.

35. assign led = led_status;

36.

37. endmodule
1.4.4 BHERSE

PG2T70H f¥) LED #1 CLK 5 FPGA ¥] 10 &350 iR F KT, i T A
B A T e B A

DIFFI0_L6_G3_18N_VREF ===
DIFFI0_L6 _G3_18P] USER_LEDO
DIFFIO L6 G3_19N| USER_LED1
DIFFIO L6 G3 19P| USER_LED2
DIFFI0O L6 G3 20N _DQS| USER_LED3
DIFFIO L6 G3 20P_DQS| USER_LED4
DIFFIO L6 G3 2IN| USER_LED5
DIFFIO L6 G3 21P = USER_LED6
DIFFIO L6 G3 22Nz USER_ IFDT
DIFFIO L6 G3 22P === CORE_USER LEDS
DIFFIO L6 G3 23N == CORE_USER_LED9Y
DIFFT0_L6_G3_23P [~7g
S10_L6_00 <77
SI0 L6 01

PG2T70H_FBB484

(=35 FPGA Pin
LEDI uUl6
LED2 T16
LED3 R16
LED4 Y16
LED5 W16
LED6 Y14
LED7 W14
LEDS W15

AR RACEHE AR, PG2T70H A MERME 1 8 /N F it (K1~8) ,
A E AL, (BRI R, 10 B N EE AR 4BEA i N Heaknt,
10 _E RSN N B P R BT — AN P s e A B AL N RT A,

1.5 SEIRII&R

8 MU LED T 42 {15 € AR MR A TR K s SE AR 2K o

2. BT RIKAT LR BFE

2.1 PG2T70H F & E 1

PG2T70H &4 8 AN LED 4] (LED1~8) , FPGA i H v v SFIsF xot
MIF LED 4T =47 (IS IE BB “PG2T70H FF R AR B4R B FH1)

2.2 SEREH/Y

FH USER_BUTTONI # 484 A, V)#: USER_LEDI1~USER_LEDS)% H 2%
.

2.3 SCIG R

SEHAEZRUN R

CLK KEY_LED

REV KEY_CTL LED_CTL LED[7:0]

(1) TR SHLLIH LED KT R

(2) BRI — M R B

BN SER AR FOR B BERE 2 — TR, W RN TR
i BRI TR B SR AR IR (L, WA, PR
it

B 7 T
1. module_name # (
2. .PARAM (PARAM_SET)
3.) unint_name(// modul
e_name NItk module #; unint_name AI{L)5 BT AR
4, .port (signal)

2.3.1 R HIRIRThEE

BIZBMANG T o GETHLE L N IRAG PRI 3 R, TH ST
TS 0~2 7E3, FiH A Es RLiE 4 LED Sl Bk

RIETRMAGESH: Woh, %8 WESa: FKTERES;

N ST RE AL 2 .

<1>PN A LA S O B AL B

<>l sy GHEUE D SO g PR SR AT RS

S KEY ¢
Keyl 1 : ctl
» BTN_DEB —p -
2.3.2 EEHEMER
IRRHE T R
A Bk
btn in " :
A& R %[
10-20ms 10-20ms
flag
btn_deb_fix

A JE EHEhI 812000 5~ 10ms, BRI a0 iabriR, FF4E 10-20ms Jaks
WIAE, RS X P R, AR PR, SR

2.3.3 LED ¥R Th&E

3 it AT AR A Fc b A i R K T BEE R DI, &4 LED (8RS
RN A . R T RS2 E S

BNAE S W, AT EEAERIE S, HES: 8bit fL3EA) LED f&H(E
Ty DIREACEER S FUKIDIRE VRS, ASFEIRES B UIHU infryliate;

2.4 SCIEIRRSETT

2.4.1 MEXHIRE

1. “timescale 1ns / 1ps

2. “define UD #1

3. module key led top(

4. input clk,

B input key,

6.

1. output [7:0] led

8.);

9.

10. wire [1:0] ctrl;

11.

12. key ctl key ctl(

13. .clk (clk),
14. .key (key),
15.

16. .ctrl (ctrl)
17.)

18.

19. led u_led(

20. .clk (clk),

21. .ctrl (ctrl),

22.

23. .led (led)

24.);

25.

26. endmodule

2.4.2 IRBITHHRIR

1. “timescale 1ns / 1ps

2. “define UD #1

3. module key ctl(

4. input clk,

o input key,

6.

7. output [1:0] ctrl

8.);

9.

10. wire btn_deb;

11. // ° XiIa99

12. btn_deb_fix#(

13. .BTN_WIDTH (4'd1), //parameter

BTN_WIDTH = 4'd8

14. .BTN_DELAY (20'h7_ffff)

15.) u_btn_deb

16. (

17. .clk (clk),//input

clk,

18. .btn_in (key),//input [BTN_WIDTH-1:0]
btn_1in,

19.

20. .btn_deb_fix (btn_deb) //output reg [BTN_WIDTH-1:0]
btn_deb

21.)

22.

23. reg btn_deb_1d;

24. always @(posedge clk)

25. begin

26. btn_deb_1d <= “UD btn_deb;

217. end

28.

29. reg [1:0] key push_cnt=2'de;

30. always @(posedge clk)

31. begin

32. if(~btn_deb & btn_deb 1d)

S5 begin

34. if(key_push_cnt == 2'd2)

S58 key push cnt <= “UD 2'de;

36. else

37. key push cnt <= “UD key push_cnt + 2'd1;

38. end

39. end

40.

41. assign ctrl = key push _cnt;
42.

43. endmodule

2.4.3 IREEEEHER
1. “timescale 1ns / 1ps
2. “define UD #1
3. module btn_deb_fix#(
4. parameter BTN_WIDTH = 4'd8,
5. parameter BTN_DELAY = 20'h7_ffff
6.)
7. (
8. input clk, //
9. input [BTN_WIDTH-1:0] btn_in,
10.
11. output reg [BTN_WIDTH-1:0] btn_deb fix
12.);
13.
14. //16 "'h3ad43;
15. reg [19:0] cnt[BTN_WIDTH-1:0];
16. reg [BTN_WIDTH-1:0] flag;
17.
18. reg [BTN_WIDTH-1:0] btn_in_reg;
19.
20. always @(posedge clk)
21. begin
22. btn_in_reg <= “UD btn_in;
23. end
24.
25. genvar 1ij;
26. generate
27. for(i=0;i<BTN_WIDTH;i=i+1)
28. begin
29. always @(posedge clk)
30. begin
31. if (btn_in_reg[i] ~ btn_in[i]) //HK#%ELIHITFLEE 501X
[FR R
32. flag[i] <= “UD 1'b1;
33. else if (cnt[i]==BTN_DELAY) // 54 10ms -20ms J5171E
34. flag[i] <= “UD 1'bo;

S58 else
36. flag[i] <= “UD flag[i];
37. end
38.
39. always @(posedge clk)
40. begin
41. if(cnt[i]==BTN_DELAY) // 11 % 10ms -20ms #1175
42. cnt[i] <= “UD 20'de;
43. else if(flag[i]) /1 FIE) X] AT i1
44. cnt[i] <= "UD cnt[i] + 1'b1;
45. else // FEFIE)IX] R TF @
46. cnt[i] <= “UD 20'de;
47. end
48.
49. always @(posedge clk)
50. begin
51. if(flag[i]) /I FLBIXE], T R
52. btn_deb_fix[i] <= “UD btn_deb fix[i];
53. else // FEELBIIX], IR
E/beEex
54. btn_deb_fix[i] <= “UD btn_in[i];
DD end
56. end
57. endgenerate
58.
59. endmodule
2.4.4LED 1ZHIHEHR
1. “timescale 1ns / 1ps
2. “define UD #1
3. module led(
4. input clk,//56MHz
B input [1:0] «ctrl,
6.
7. output [7:0] led
8.);
9.
10. reg [24:0] led_light_cnt = 25'do;
11. reg [7:0] led_status = 8'b1000 0000;
12.
13. // time counter
14. always @(posedge clk)
15. begin

16.
17.
18.
19.
20.
21.
22.
25,
24.
25).
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

4].
42.
43.
44,
45.
46.
47.
48.
49.
0.
ol.
o2.
53.
o4.

95.
6.
o7.

if(1

else

end

reg [1:0

ed_light_cnt == 25'd24 999 999)
led light cnt <= “UD 25'de;

led_light_cnt <= "UD led_light cnt + 25'd1;

] ctrl_1d=0; /) R E—1 Led KBTI ctrl (6

always @(posedge clk)

begin
if(1

end

// led s

ed light cnt == 25'd0)
ctrl _1d <= ctrl;

tatus change

always @(posedge clk)

begin
if(1
begi

us[7:11};

us[7:11};

end

ed_light_cnt == 25'd24_999 999)//0.5s /i
n
case(ctrl)
2'de : //MEZEIEN 1T Led JiKAT
begin

if(ctrl_1d != ctrl)
led_status <= "UD 8'bl000 0000;
else
led status <= "UD {led status[@],led stat

end
2'dl S/ H
begin

if(ctrl_1d != ctrl)
led status <= "UD 8'bl010_1010;
else
led status <= "UD ~led_status;
end
2'd2 . // REBICA AT VK
begin
if(ctrl_1d != ctrl)
led status <= "UD 8'b0111 1111;
else
led status <= "UD {led status[@],led stat

end
endcase

58. end
59.

60. assign led = led_status;
61.
62. endmodule

2.5 LW IR

4% T — X KEY1, LED TIRAD#— Ik, HIL=F LED St vl
LED #23(—: A BMRALH) LED ¥k s LED B~ B —R—ZE A

LED B =: ML SIMRALRE KT 3K

3.8 O % scae filts

3.1PG2T70H F & &1

PG2T70H JF &S ¥ — % USB # 5 EiHL, KA) USB-UART it5
CP2102,USB % 1 X USBTypeC #1, #] LA —H USBTypeC £kiZH:3] PC 1
USB H#H7T & DMEdEEE GREE A PG2T70H JF KA1 FH F) .

3.2 SLIWEER

R S IR R 1 B 9 115200bps, #dia s oA 1 At ahhn. 8 A diEfr.
LR AL. 1 ALG RN . RS Is [\ o OB F & IE — R i 2o 1
“www.meyesemi.com”, 38T # F)T FAR T LA 7S E UK IR # T (00~FF),
LED A kil B /R 5k .

3.3 SLIR R

3.3.1 fOFEHE

MR BIFATTAT LLE B bRk A 92 2 9 RZL, HARE SR

Himsk:
TXD (pin3) : & s % H (TransmitData)RXD (pin2) = & K&

(ReceiveData)

BT

RTS(pin7): /&% K51 K (RequesttoSend)CTS (pin8) : i & /& 1% (CleartoSend)

DSR (pin6) : Hf K% mi4h (DataSendReady)

DCD (pinl) : 4 #ipAs Ml(DataCarrierDetect)

DTR (pind) : ##s 2 %05 25 (DataTerminalReady)

2

GND (pin5) : HbZk

Hoe

RI (pin9) : BFEIER

HERATH RS232 # LAV E] 1 9 i) =M: TXD, RXD, GND.
(ELZ 0 T B A, X5 0 25008 B A R A AR IR RO R 2, 205 IR A%
it (FEHAEN, TR . XN T REZHH O 2, H
TS TS T T A A7 0 3 e P 52 1 PR

RS232 [&7

DATA BUS UART 1 UART 2 AT
bit 0 —— ——> bit 0
Bit 1 —— — bit 1
bit 2 =———) — bit 2
bit 3 ———— Tx —>bit 3 UART 1 UART 2
Bit 4 — \ —>bit 4
bit § ——) Rx —>bit &
bit 6 =—— —>bit 6
bit 7 —p —_— bit 7 X
NS
AN SNE I
Paj-lfet)4—-_-—4 A —+’
~ _ e XXX T
0to1
1 :'I:"‘ 5 to 9 data bits psiltI;v St:)';ohis !ﬁ 1\[1' '\Ni f"!‘ ' J. IJJ ’
fi e TUAMEI ———— | o |
- _— > "
i

Data Frame

B 1 UART #) £ 3& 1 46 X

BN SR —NEE0E S, BB TS,

BEfr: FTLUR 5~8 ALiB R0 17, 40 ASCI 65 (747D , ¥7J& BCD 15
(841D &

RO BRI FaX—Ar)5, AE A1 A EON B R (AR 6 3 45 B (B

BB o

(IR0 B A TR A AbRE . ATRUR 1 B, 15 B, 2 S
o

FIRR A TGRS, R YA R YR

WRERE: uart PSRRI A LUK R HURER, R RO AR L8 (bit). —
PR A R AT 23 9600,19200,115200 3% 35, Hosz i Mgk & SRR X 4 24
Lo iz B bit) -

SN B G PRI 8 L R 25 0

srenyigigigigigigigigizigin

TXD Do D1 D2 D3 | D4 D5 D6 D7 | PA S
START STOP

332 ROGMESE

H HUROE AR
TRANSMITTING
DATA BUS UART

0_‘ -

= TRANSMITTING UART S R

00— - UART UART
Tert et o100

0— ' 01001101

—n Fa ATA FRAME N TN

11— Tt oy S0P |

| ; » ol

144»

H5 R

RECEIVING UART RECEIVING . taBUS

TRANGMITTHHG RECEIVING
Lant UART
ter et 108108 4 o
01001101, z
'4 DATA FRAME ¥ s
¥ in STOF
START 811 PaRITY STO -

333 ROKEFEH

MAHI T A B a] LY @20 & RIS mT DALLE 5~8bit 2dl, fEiTHE
ML FFE 5 B ASCIL RS (7bit) Row, FrPAFRF 1 & aEmT LA ASCI S & 3% .

it ASCII i A% AT 1531 : “www.meyesemi.com”F #I|[f] 745 % v, ASCII fi5;

8'hl : write data <= 'UD 8'h77;// ASCII code is w
8'h2 : write data <= ‘UD 8'h77;// ASCII code is w
8'h3 : write data <= ‘UD 8'h77;// ASCII code is w
8'hd : write_data <= "UD 8'h2E;// ASCII code is .
8'h5 : write data <= ‘UD 8'h6éD;// ASCII code is m
8'hé : write data <= "UD 8'h€5;// ASCII code is e
8'h7 : write data <= ‘UD 8'h79;// ASCII code is y
8'h8 : write data <= "UD 8'h65;// ASCII code is e
8'h9 : write data <= "UD 8'h73;// ASCII code is s
8'ha : write data <= 'UD 8'hé5;// ASCII code is e
8'hb : write data <= 'UD 8'héD;// ASCII code is m
8'hc : write data <= ‘UD 8'h69;// ASCII code is i
8'hd : write data <= 'UD 8'h2E;// ASCII code is .
8'he : write data <= "UD 8'h63;// ASCII code is c
8'hf : write data <= "UD 8'h6éF;// ASCII code is o
8'hl0 : write data <= 'UD 8'h6éD;// ASCII code is m

3.4 SCIRURRS T

MSESS: H 23 A n] A SE A o)5

MR EE B HrRe R I TSR — TS, RSO T B, BATHE BT
IORPRFF TX, BERX I5e 80k, WORIRCRe A I TH e S A o5 AR B A

R BTN S 4 MESSOHP (195 PC B E M UART, (&R
AR WO ZER I AOE B, 5 BCE iR

uart
X
1 Uart_data_gen |eegee| Uart_ (X [
----.-..p—
o LED[7:0]
----d---------...— LJan;nx +-----.-#I..p

3.4.1 B OREERIET

Hobr: WS — ANk E 5, K data[7:01> K & &k W
{start,data[0:7],stop} 3k 10bit Xds (EMIRLL, 15 IEAL 1bit)

A AN AT oK — AN IFAT Bt SR AT AL

Jiik— @i bit THS baud THEEE HIEE AL H

1. // transmit bit

2. always@(posedge clk)

3. begin

4. if(!rstn)

5. txd <= “UD 1'bi;

6. else

7. begin

8. if(trans_en)

9. Begin

10. // FIFLEIR S 1L pn i A R A3 5 A E A i F) trans_data #a]HH F 77 i
f1]

11. // txd <= “UD trans_data[trans_bit];

12. // # bit EHH T riEa

13. case(trans_bit)

14. 4'ho ttxd <= “UD 1'b0;

15. 4'h1 :txd <= “UD tx_data_reg[o];

16. 4'h2 :txd <= “UD tx_data_reg[1];

17. 4'h3 :txd <= “UD tx_data_reg[2];

18. 4'h4 :txd <= “UD tx_data_reg[3];

19. 4'h5 :txd <= “UD tx_data_reg[4];

20. 4'h6 :txd <= “UD tx_data_reg[5];

21. 4'h7 :txd <= “UD tx_data_reg[6];

22. 4'h8g :txd <= “UD tx_data_reg[7];

23. 4'h9 :txd <= "UD 1'bl;

24. default :txd <= “UD 1'b1;

25. endcase

26. end

217. else

28. txd <= "UD 1'bil;

29. end

30. end

J7ik . i3 bit TS baud THEEEHPRASBEFE, RSP

1. // Llogical ouput K&HHH

2. always @ (posedge clk)

3. begin

4. if(tx_en)

3 begin

6. case(tx_state)

7. IDLE uart_tx <= “UD 1'hl; //ZMKEHH e
¥

8. SEND_START : wuart_tx <= “UD 1'he; //start &KL
TR AT AT 7 T

9. SEND_DATA /) R AT A
JEHIRIE—T bit;

10. begin

11. case(tx_bit cnt)

12. 3'ho uart_tx <= "UD trans_data[@];

13. 3'hl uart_tx <= “UD trans_data[1];

14. 3'h2 uart_tx <= “UD trans_data[2];

15. 3'h3 uart_tx <= "UD trans_data[3];

16. 3'h4 uart_tx <= “UD trans_data[4];

17. 3'h5 uart_tx <= “UD trans_data[5];

18. 3'h6 uart_tx <= "UD trans_data[6];

19. 3'h7 : wuart_tx <= “UD trans_data[7];

20. default: uart_tx <= "UD 1'hi;

21. endcase

22. end

23. SEND_STOP uart_tx <= “UD 1'hl; //K&EfFIEKE fr
H 1 PNBFFR AR T

24. default uart_tx <= “UD 1'h1; // Hrlasitil 54
RS —F, (RIF i

25. endcase

26. end

27. else

28. uart_tx <= “UD 1'hi;

29. end 30

XHEH R 7%, 58% module W11 :

| 1.

“timescale 1ns / 1ps

SRl 1 Ll ©° I

9.

10.
11.

12.

13.

14.
5"

16.

17.
18.
19.

20.
21.

22.
2o

28"
26.

217.
28.
29.
30.
31.
32.
Sk

“define UD #1

module uart_tx #(

parameter BPS_NUM = 16'd434
// W B K HF F & 48ee K , bit fr g # # G A T
#:56MHz set 10417 46MHz set 8333
// W B K F F & 9eee K , bit fr g # # G A T
#:50MHz set 5208 40MHz set 4167
// W B K HF F K 115200 H#f . bit i F A #H H A T
#(:50MHz set 434 40MHz set 347 12M set 104

)
(
input clk, // clock
w5
input [7:0] tx_data, // uart tx data signal byte;
FIFREN T T
input tx_pluse, // uart tx enable signal,rising 1i

s active; KFEHLKIEMK IG5

output reg uart_tx, // uart tx transmit data Line
KX R G52
output tx_busy // uart tx module work states,hig
h is busy; KiEHL KETE
)
//:::
//wire and reg in the module
//:::
reg tx_pluse_reg =0;
reg [2:0] tx_bit_cnt=0; //the bits number has transmited.
reg [2:90] tx_state=0; //current state of tx state machin
e.
reg [2:0] tx_state_n=0; //next state of tx state machine.
reg [3:0] pluse delay cnt=0;
reg tx_en = 0;

// uart tx state machine's state

localparam 1IDLE = 4'h@; //tx state machine's state. 5 /WL
ary

localparam SEND_START = 4'hl; //tx state machine's state. Xi%
start KF

localparam SEND_DATA = 4'h2; //tx state machine's state. Xi*

localparam SEND_STOP
stop A&

localparam SEND_END

4'h3; //tx state machine's state. Xi%

4'h4; //tx state machine's state. Xi%

38.
39.
40.
41.
42.

43.
44,

45.
46.
47.
48.
49.
50.
51.
52.
b3t
54.
bt
56.
o57.
58.
959.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

// uart bps set the clk's frequency is 56MHz
reg [15:0] clk div_cnt=0; //count for division the clock.

assign tx_busy = (tx_state != IDLE);
//some control single.

always @(posedge clk)
begin

tx_pluse reg <= "UD tx_pluse;
end

// uart FRKE TIERFERS1ES
always @(posedge clk)
begin
if(~tx_pluse reg & tx_pluse)
tx_en <= 1'bil;
else if(tx_state == SEND_END)
tx_en <= 1'bo;
end

//division the clock to satisfy baud rate. Ji4F/5H it 7
always @ (posedge clk)
begin
if(clk_div_cnt == BPS_NUM || (~tx_pluse reg & tx_pluse))
clk_div_cnt <= "UD 16'he;
else
clk div_cnt <= "UD clk_div_cnt + 16'h1;
end

71.

72.
73.
74.
75.
76.
7.
78.

79.
80.
81.
82.
83.
84.

85.
86.

87.
88.
89.
90.
91.
92.
93.
94.
95"
96.
97.
98.
99.

//count the number has transmited. KiZFHINE T, &k bit (7112,

LUK TR E
always @ (posedge clk)
begin
if(!tx_en)
tx_bit _cnt <= "UD 3'h@;
else if((tx_bit cnt == 3'h7) && (clk_div_cnt == BPS_NUM))
tx_bit _cnt <= "UD 3'h@;
else if((tx_state == SEND DATA) && (clk div_cnt == BPS_NU
M))
tx_bit _cnt <= "UD tx_bit _cnt + 3'h1;
else
tx_bit _cnt <= "UD tx_bit_cnt;
end
//==
//transmitter state machine
//==
// state change LZEE#E
always @(posedge clk)
begin
tx_state <= tx_state_n;
end
// state change condition KXZEEFEF1FRAE
always @ (*)
begin
case(tx_state)
IDLE
begin

100.

if(~tx_pluse_reg & tx_pluse) //MRKiXM 16 11/
KR 7 BEFEF), K& start AF
101.
102.
103.
104.
105.
106.
107.
FERTHIINE PG HAN , KX
108.

tx_state_n = SEND_START;
else
tx_state_n = tx_state;
end
SEND_START :
begin
if(clk_div_cnt == BPS_NUM)

tx_state_n = SEND_DATA;

/) RIE W

109.

else

/15

//st

V4

110. tx_state n = tx_state;
111. end
112. SEND_DATA :
113. begin
114. if(tx_bit_cnt == 3'h7 & clk_div_cnt == BPS_NUM)
/)R] 8 TNEFF G (&% T 8bit H#E) , BRI stop AE
115. tx_state n = SEND_STOP;
116. else
117. tx_state n = tx_state;
118. end
119. SEND_STOP :
120. begin
121. if(clk_div_cnt == BPS_NUM) /) REFIL A
T P RFFTH, 1T BRE — TR TRNE EF, Z JGBkF R K% 5 KR
122. tx_state_n = SEND_END;
123. else
124. tx_state_n = tx_state;
125. end
126. SEND_END : tx_state_n = IDLE;
127. default : tx_state n = IDLE;
128. endcase
129. end
130.
131. // Llogical ouput KEHHH
132. always @ (posedge clk)
133. begin
134. if(tx_en)
135. begin
136. case(tx_state)
137. IDLE : uart_tx <= “UD 1'hi;
IRR S F i 15 /T
138. SEND_START : wuart_tx <= "UD 1'he;
art KB KK —TFHRE TN BT
139. SEND_DATA
BB FF WA TR E—T bit;
140. begin
141. case(tx_bit_cnt)
142. 3'he : wuart_tx <= "UD tx_data[@];
143. 3'hl : wuart_tx <= "UD tx_data[1];
144. 3'h2 : wuart_tx <= "UD tx_data[2];
145. 3'h3 : wuart_tx <= “UD tx_data[3];
146. 3'h4 : wuart_tx <= "UD tx_data[4];
147. 3'h5 : wuart_tx <= "UD tx_data[5];

148. 3'hé : uart_tx <= "UD tx_data[6];

149. 3'h7 : wuart_tx <= "UD tx_data[7];
150. default: uart_tx <= "UD 1'hi;
151. endcase
152. end
153. SEND_STOP : wuart_tx <= “UD 1'hi;
154. default : uart_tx <= “UD 1'hi;
1815 endcase
156. end
157. else
158. uart_tx <= “UD 1'h1;
1189 end
160.
161. endmodule
162.
3.42 SRR

i SO R RS B 0 A, ot R O AR, HEAW LA
LSEY

LEWOTIRE S, 2 rx PEEATER G IRRE LA o RO MR P, SREBTHEA
FE start;

2R B, &, T D A S PR I e A DB R ST s B0 7 B A B
i, FRWCEEE R IO 75 27 rx RS E N 2O, 25 U8R A S A o) A7 2

3K BIRSUE, BT 1bit fENFAFA G 75 2 R i A, IR
ZJa R NEBEAE RS T, o B A R

Module B IHUTT:

“timescale 1ns / 1ps
“define UD #1

module uart _rx # (
parameter BPS_NUM = 16'd434

28 O Ball ©° ISl =

8.

9.

10.
11.
12.
13.
14.
15"
16.
17.
18.
19.
20.
21.
22.

e

24.

A5

26.

217.

28.

29.
30.

31.

32.

Sk

34.

St

36.

37.

/) RERFFE 115200 I, bit (750 F A

#:50MHz set 434 40MHz set 347

)
(
//input ports
input clk,
input uart_rx,
//output ports
output reg [7:0] rx_data,
output reg rx_en,
output rx_finish
)s
// uart rx state machine's state
localparam 1IDLE = 4'ho;
x.
localparam RECEIV_START = 4'hil;
— P EAF A
localparam RECEIV_DATA = 4'h2;

1) EIRE, FET 5

// 4l vart FFIEE S 14T

// W Vart (#5185 5 4L

LFEGEXEH 8bit, BEPRAFAIH 7 B, 8 1SR Ek#] stop L.

VIRAIRY S €/ Tt A

/1 RPN

localparam RECEIV_STOP = 4'h3;

TR IRE AR —EHIFZHE P iR PRl i B — ML AL B IR S B 42
localparam RECEIV_END = 4'h4;
//:::::::::::::::::::::::::::::::::

//=================================

reg [2:0] rx_state=0;
tate machine. 4FJIAZ

reg [2:0] rx_state_n=0;
e machine. PR

reg [7:0] rx_data_reg;

TENCEHG ZE 7 17

reg uart_rx_1d;
e. A7 uart_rx — N E1E#

reg uart_rx_2d;
e. RIZuart_rx FIF 1IN A

wire start;

M F] start 155 F&
[15:0] clk_div_cnt;
Bt s Bt £ s

yte receive.

reg
e clock.

//current state of tx s

//next state of tx stat

//

//save uart_rx one cycl

//save uart_rx one cycl

//active when start a b

//count for division th

38.
39.

40.
41.

42.
43.
44,
45.
46.
47.
48.
49.
0.
ol.
o2.
53.
o4.
95.
6.
o7.
o8.
959.
60.
61.
62.
63.
64.
65.

66.
67.
68.
69.
70.
71.
12.

73.
4.
75.
76.
7.

//some control single.
always @ (posedge clk)
begin
uart_rx_1d <= “UD
uart_rx_2d <= “UD
end

assign start

(lu

(rx

assign rx_finish

//division the clock t
always @ (posedge clk)
begin
if(rx_state == IDL
clk_div_cnt
else
clk_div_cnt
end

uart_rx;
uart_rx_1d;

art_rx) & (uart_rx_1d || uart_rx_2d);

_state == RECEIV_END);

o satisfy baud rate. JiF /i il ##

E || clk_div_cnt == BPS_NUM)
<= "UD 16'h@;

<= "UD clk_div_cnt + 16'h1;

// receive bit data numbers

/) BRI T, YT bit f7if 40, FF— PR 300 1

reg [2:0] rx_b
smited.
always @ (posedge clk)
begin
if(rx_state == IDL
rx_bit_cnt <=

it _cnt=0; //the bits number has tran

E)
“UD 3'he;

else if((rx_bit_cnt == 3'h7) && (clk_div_cnt == BPS_NUM))

rx_bit_cnt <=
else if((rx_state
NUM))
rx_bit_cnt <=
else
rx_bit_cnt <=
end

*UD 3'he;
== RECEIV_DATA) && (clk_div_cnt == BPS_

"UD rx_bit _cnt + 3'hl;

“UD rx_bit_cnt;

80. //================c=c==c=c=c=cccc=c=c=c-c-ccsoso—oooosomo—o—oomo=

81. /) REFLRE B F

82. always @(posedge clk)

83. begin

84. rx_state <= rx_state n;

85. end

86.

87. 1/ KB PUREBRF 51 R B F A1

88. always @ (*)

89. begin

90. case(rx_state)

91. IDLE

92. begin

93. if(start) Vog vk
Fstart 752K, T —KEEkFEF start K&

94. rx_state_n = RECEIV_START;

95. else

96. rx_state_n = rx_state;

97. end

98. RECEIV_START

99. begin

100. if(clk_div_cnt == BPS_NUM) //

CSEMAN start a5

101. rx_state_n =
102. else

103. rx_state_n =
104. end

105. RECEIV_DATA

106. begin

107. if(rx_bit_cnt ==

J 5k 8bit #HEEI 5

108. rx_state_n =
109. else

110. rx_state_n =
111. end

112. RECEIV_STOP

113. begin

114. if(clk_div_cnt =

/ EFERBN stop frifi S
115.

rx_state_n

RECEIV_DATA;

rx_state;

3'h7 && clk_div_cnt == BPS_NUM) /

RECEIV_STOP;

rx_state;

BPS_NUM)

RECEIV_END;

116. else

117. rx_state_n = rx_state;

118. end

119. RECEIV_END

120. begin

121. if(luart_rx_1d) /

) BILERHRING R FH I XK start frsla 5, i ZBb#2) start
AKE

122. rx_state_n = RECEIV_START;

123. else /
/BB HAMLI TR, FIZ)ZIRRES, 17 start 155 H92)K

124. rx_state_n = IDLE;

125. end

126. default : rx_state_n = IDLE;

127. endcase

128. end

129.

130. // K&V

131. always @ (posedge clk)

132. begin

133. case(rx_state)

134. IDLE ,

135. RECEIV_START : // ETIN
Hlstart K H N E G20 77 17 s FIECH5 (ERE B

136. begin

137. rx_en <= “UD 1'bo;

138. rx_data_reg <= “UD 8'ho;

139. end

140. RECEIV_DATA

141. begin

142. if(clk_div_cnt == BPS_NUM[15:1]) /)1
BEFFRTIT 1137 B 26 L1520 7

143. rx_data_reg <= “UD {uart_rx , rx_data_reg[7:

11}; // BIEM A BN 7 20 uart_rx ZEHEAZ20 & 7 arll) sim (i (Uart (€57
IRAZERT, B — 1> bit WIIFAE a2)

144. end

145. RECEIV_STOP

146. begin

147. rx_en <= "UD 1'bl; /) BHHE
FEIG S, 2T 5 A 5

148. rx_data <= “UD rx_data_reg; Y
AT AF a8 W E TR (1 25 30 HH 27 17

149. end

150. RECEIV_END

151. begin

152. rx_data_reg <= “UD 8'ho;
183 end

154. default: rx_en <= “UD 1'bo;
1815 endcase

156. end

157.

158. endmodule

159.

160.

161.

162.

3.4.3 B AR ETHIEHET

Hbr: 7248 1S [mIBg AR AE 5 Hm 56— /N RIEFTT, busy R BRI 4
Hj*F"”f\%Zﬁﬁ;
Module 1 :

1. “timescale 1ns / 1ps

2. “define UD #1

3. module uart_data_gen(

4. input clk,

e input [7:0] read_data,

6. input tx_busy,

7. input [7:0] write max_num,
8. output reg [7:0] write data,

9. output reg write en
10.);

11.

12. // set every second send a string, "====HELLO WORLD==="
13. /] BELFRIE—FrE

14. reg [25:0] time_cnt=0;

15. reg [7:0] data_num;

16. always @(posedge clk)

17. begin

18. time_cnt <= “UD time_cnt + 26'd1;
19. end

20.

21. /) BB R T EIX]

22. reg work_en=0;

23. reg work_en_1d=0;

24. always @(posedge clk)

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
0.
ol.
o2.
53.
o4.
95.
6.
o7.
o8.
29.
60.
61.
62.
63.
64.
65.
66.
67.
68.

begin
if(time_cnt == 26'd2048)
work_en <= "UD 1'b1l;

else if(data_num == write_max_num-1'b1l)

work_en <= “UD 1'bo;
end

always @(posedge clk)
begin

work_en_1d <= “UD work_en;
end

// get the tx _busy‘s falling edge FFHK tx_busy /9 7

reg tx_busy reg=0;
wire tx_busy f;

always @ (posedge clk) tx_busy reg <= “UD tx_busy;

assign tx_busy f = (!tx_busy) && (tx_busy reg);

/] BRGNS
reg write_pluse;
always @ (posedge clk)
begin
if(work_en)
begin
if(~work_en _1d || tx_busy_ f)
write_pluse <= "UD 1'bl;
else
write_pluse <= "UD 1'b0;
end
else
write_pluse <= "UD 1'b0;
end

always @ (posedge clk)
begin
if(~work _en & tx_busy f)
data_num <= 7'he;
else if(write pluse)
data_num <= data_num + 8'hil;
end

always @(posedge clk)
begin

69. write en <= “UD write pluse;

70. end

71.

12. // FHHIN N ASCIT 15

73. always @ (posedge clk)

74. begin

75. case(data_num)

76. 8'he ,

1T. 8'hl : write_data <= "UD 8'h77;// ASCII code is w
78. 8'h2 : write_data <= "UD 8'h77;// ASCII code is w
79. 8'h3 : write_data <= "UD 8'h77;// ASCII code is w
80. 8'h4 : write_data <= "UD 8'h2E;// ASCII code 1is .

81. 8'h5 : write_data <= "UD 8'h6D;// ASCII code is m
82. 8'h6 : write_data <= "UD 8'h65;// ASCII code is e
83. 8'h7 : write_data <= "UD 8'h79;// ASCII code is y
84. 8'h8 : write_data <= "UD 8'h65;// ASCII code 1is e
85. 8'h9 : write_data <= "UD 8'h73;// ASCII code 1is s
86. 8'ha : write_data <= "UD 8'h65;// ASCII code 1is e
87. 8'hb : write_data <= "UD 8'h6D;// ASCII code is m
88. 8'hc : write_data <= "UD 8'h69;// ASCII code is 1
89. 8'hd : write_data <= "UD 8'h2E;// ASCII code 1is .

90. 8'he : write_data <= "UD 8'h63;// ASCII code 1is c
91. 8'hf : write_data <= "UD 8'h6F;// ASCII code is o
92. 8'h1e : write_data <= "UD 8'h6D;// ASCII code is m
93. 8'h1l ,

94. 8'h12 : write data <= “UD 8'hed;

95. 8'h13 : write data <= “UD 8'h@a;

96. default : write_data <= “UD read_data;

97. endcase

98. end

99.

100. endmodule

101.

3.4.4 B OSSR EERET

HAx: BT 1s [a) e DB K08 — IRk 2 7R 1) “www.meyesemi.com”, i
i H B AT BNt f I A #, LED Akl Bk

Uart_data gen B =4 —ANE][E 1S £ RE S, FNHHE N RET
7, FER} vart_tx Fiy () busy TREIERIDK, FRA vart_tx AT RAREFTKIET —

AN byte B, FRRZS HE FURIE RO ko, FE4 R —AS 71

Uart_rx BEHUZ I S — > rx_en (55 GREWHBEREGES) - —
NIRRT BBRE T RSP, W E S5 LED /T

HAKH module SZELLN T :

1. “timescale 1ns / 1ps

2. “define UD #1

3

4. module uart_top(

e //input ports

6 input clk,

7 input uart_rx,

8

9. //output ports

10. output [7:0] led,

11. output uart_tx

12. 1);

13.

14. parameter BPS_NUM = 16'd434;

15. /) B KA FE K 48ee K . bit 7 G # # OB T
#(:50MHz set 10417 46MHz set 8333

16. /) R’ BE KA FE N 9eee K, bit fr G # # B T
#/:50MHz set 5208 46MHz set 4167

17. /) W B W HF E K 115200 K . bit (7 KOO OB
#(:50MHz set 434 40MHz set 347 12M set 104

18.

19.

20, Wl e =

21. //wire and reg in the module

22. //===================

23.

24. wire tx_busy; //transmitter 1is free.

25. wire rx_finish; //receiver 1is free.

26. wire [7:0] rx_data; //the data receive from uart_rx.

217. wire [7:0] tx_data;

28. wire tx_en; //enable transmit.

29.

30, W= e e

31. //logic

Sk
34.
Sht
36.
37.
38.
39.
40.

41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
b3t
54.
bt
56.
7.
58.
959.
60.
61.
62.

63.

wire rx_en;

//=======================
//instance
//=======================
reg [7:0] receive_data;
always @(posedge clk) receive data <= led;
uart_data_gen uart_data_gen(
.clk (clk),//input
clk,
.read_data (receive_data),//input [7:0]
read_data,
.tx_busy (tx_busy) //input
tx_busy,
.write_max_num (8'hl4) //input [7:0] w
rite_max_num,
.write_data (tx_data), //output reg [7:
0] write_data
.write_en (tx_en) //output reg
write_en
)s
//uart transmit data module.
uart_tx #(
.BPS_NUM (BPS_NUM) //parameter BPS_N
um = 16'd434
)
u_uart_tx(
.clk (clk),// input
clk,
.tx_data (tx_data),// input [7:0]
tx_data,
.tx_pluse (tx_en),// input
tx_pluse,
.uart_tx (uart_tx),// output reg
uart_tx,
.tx_busy (tx_busy) // output
tx_busy
)s
//Uart receive data module.
uart_rx #(
.BPS_NUM (BPS_NUM) //parameter BPS_
NUM = 16'd434
)

64. u_uart_rx (

65. .clk (clk),
66. .uart_rx (uart_rx),
67. .rx_data (rx_data)
68. .rx_en (rx_en),
69. .rx_finish (rx_finish)
70.)
71.
72. assign led = rx_data;
73.
74. endmodule
75.

3.5 LW IS

F SSCOM 5 MR T H, PR E N 115200bps, Fdats =8 1 AL dh
fry 8 AL EHEAL. TERIAL 1 AL L5 AL, FH Type-C BT RAR 5 s 545 an
WA

LI G—: (EH O T EPAERE 1S FHTEI—IK: “www.meyesemi.com”;

R SSCOM3.2 (e BINE(T T), EFhttp//wwwmeuST.com, E. — O X

WWW. meyeseml. com
'WWW . m!yesemi. COom
www. meyeseml. com
www. meyeseml. com

TEH AR

BBV | 8480 | #SB0 | T

gnefcos ~| @ XARO| =B | WWW. MCU51.COM i i[
wi¢% (115200 | I~ DTR I~ RTS Al
w |A2.
SiE(s | omeps (00 meR QS
{811 |1 v| Vg T BT [T & FHRMGSSCas. 13) ThEsE @A
Bgfs[Nore | EEBREINE: [EiE | RI-ThreadkE hEOV RS B A PERUS(E
ef2m |None v] |2 ‘
.mcu51.cor $:0 R:76 COMSEFIFF 115200bps |CTS=0 DSR=0RL
SIS

O T A FEPL Hex #% X K i% 55; A0 FH # PG2T70H R K 1Y
LEDI1,LED3,LED5,LED7 #% s5+%, LED2,LED4,LED6,LEDS A& K ARZES;

A SSCOM3.2 (fE&-E/E(T T), THhttp//www.mcu51.com, E.. — m] X |

Www. meyeseml. com
www. meyesemi. com
www. meyesemi. com [
Wi, meyesemi, com
www. meyeseml. com
www. meyesemi. com
wHw. meyesemi. com
www. meyeseml. com
www. meyeseml. com
Www. meyeseml, com
WHW. meyeseml. com
WWW. meyeseml, com
WWW. meyeseml. com
WWW. meyeseml. com
WWW. meyeseml, com
www. meyeseml. com

IR | 2 CREXH | #FS0 | #fE0 T mET
‘®O2cos | @ XARO0| B | WWW.MCU51.COM VE|
?;ﬁﬁg 115200 »| [~ DTR I~ RTS :é
|#imta(e vl rosmpmiE [00 meiR Q5
| {81t |1 v| v HExRE T S [REEFHBIRSSCONS. 13] ThiE @4 !

gl [None ~| FHBHNE: |KT-Thr e adsi 3 RGN 6. BB 1 FR DTS
| FRiZH] | None | |55
;-.f_ww.mcu5‘| cor S:1 R:437 COMSEFTFF 115200bps CTS=0 DSR=0RL ~

et I"

o]
GND

LEDG

~= W

N
\f‘—

7;213 AA; &ﬂﬁ%iu PG2T70H ¥k) LED2,LED4,LED6,LEDS # 55,
LED1,LED3,LED5,LED7 N KAIRES

ik SSCOM3.2 (tEZ-Z/IvE(T 1), Emhttp//www.mcu51.com, E.. — 0O x

Www. meyesemi. com
Www. mevesemi. com
www. meyeseml. com
Iwww. meyesemi. com
|www. meyesemi. com
Www. meyesemi. com
www. meveseml. com
Www. meyesemi. com
Www. meyesemi. com
elwww. meyeseml. com
“lwww. meyesemi. com
Www. meyesemi. com
Www. meyeseml. com
www. meyesemi. com
Www. meyesemi. com
Www. meyesemi. com

Ei Al BiEXH | fEE0 | H8E0 T men

gnefcos ~| @ X80 | #WH | WWW.MCU51.COM e |

ez [115200 | T DTR ™ RTS Al '
W A .

sgfas | sz [0 meR (43

Bz vV EgE [[TEEFHREFsScoMs. 13) ThEC g+

Bl [None v | SHFEREIE: _ RT-Thr ead3 £ chEEF 6.5 B MBS E
Fio|None v A
nvwmcu51 cor 52 R:1995 COMSEFIF 115200bps CTS=0 DSR=0RL Y

El L‘l ' i - .' =

el uﬂ@%%@ﬂ == el =
KEYD KEY1 KEY2 KEY3 KEY4 KEY5 KEY6 . KEY7

BLRLRE L LT Y

lllllllllllllmHHl

] LA Rk H AR (00~FF) & — ~ LED AT 1484k

4_S.HDMI 58 21 AR

4 51PG2T70H FEZRE I

HDMI %y N4 5% FH 72 di i MS7200HMDI 58005 H, HDMI % Hi 8 115K
i MS7210HMDI K358 Fro A5 e HDMIL.4b f2 LR ARAERLAR Y 3D 1%
ks, mom PR AL AK@30Hz, s KA FRIA B 300MHz, SCRE YUV
RGB Z[AJ [R 7 [4, B4 S8 YUV [RGB #2s

MS7200 A1 MS7210 i) IIC FC & #% 15 FPGA) 10 A%, @i FPGA K%
PR SE P BEAT R U A AT B A

PG2T70H J A AR L4 MS7200) SA & JAl N 4 2|3, # 1IC /) ID Mk 7y 0x56,
¥ MS7210 1) SA B BRI B HRJEHE, #1IC () ID Hikik ol 0xB2 (FEETEEH

“PG2T70H H KA EELEAdE HF W)

4 5.2 LI ERY

S 1. MESS0HP JT & #iiE i HDMI 78 i % | Bon 4
SIS 2.MESS0HP FF &tk HDMIIN #2Uk, ik HDMIOUT SZEUA B H 5

4 5.3 LI JRIE

4 5.3.1 BRIFHE

TEFRR A 8* 8 BER M, EIREAME TR MEER A, B BRI
B R S SRR RS T g S IR 2 R, AR, W EEIT, 1%
B i Sk T R 2 T o

LA EERHI, AT 8 MEE S, s —TE S EH, 2EAT 17 ES
ffn, BELRI5EREE 8 AT BRI AR, B T — AN ARG T, —/NE
WARA—I e —T, SR RERD v BT IR it . ELan 1920%1080P 14 3%
e 1V AITE RS E S 1920, —37H %478 1080 1T,

MR SR EREEE, R MEER AREE. IR RER R
Ebln: RGBS88S, RGB 7p#lft#: ZL R4 G, 15 B, 888 £1 R. G. B il fF
8bit, HEiE R. G. BfE—)t 28=256 K¥rif, it RGB = LKA R4
G, —MEE EERZ IR 24 A11) 256%256%256=16,777,216 f4.

Hor Active Start Hor Blank Start r Hor Sync Start

H Back Porch 1
Har Sync Time _\ % H Frant Porch
N\ s~ H Left Border H Right Border ——,
— "} » / Haor *Active® Video \ > /T
HSV nc [_] J——f¢——————— Hor"Addressatie” Video B I

| %\"er Sync Time

"
-4

A

Blanking
V Back Porch

«— \/er Active Start

 Top Barder

>
-

Addressable
Video

<
]
=
o)
<
LA
=
a
&
a

V' Botton Border

<
b
P-4
2
B
a2
4
=
o
=
a
&
H

4— Ver Blank Start
 Front Parch
«4—— \er Sync Start

I:I

: VSync
Vertical Retrace Interval

{8 F AR AWK, T, BB T 5 R 5 5 okt], B
hsync (AFIEIE) Fl vsyne (HRIBES) .

Ll Addressable #4745 R 1E SR A AT B B0 KR, (52 AR A
it DE 5 2 471H: Border i HEE A IR BB B RIAME, W% Border H
R AL 0 CBE) . 4T YO R E R AE R P R R EI KT 1Y, X
ANK S50t Blanking 34y, FOATEIEIX . FIB1E B ETHERREI—1T—
JF#&, Hsyne ¥ Ri4T, Vsync H R0t

Rk

VSYNC 1
[LT '
: uu U
L ////) :;$§fiif1 i
/ 1 Line \
L__T : v

HSYNC

P -

DE

HSYNC | . ' E’
PIX_CLK _Mmmmmm
R[7:0] E(XXXXXXXXXXEXEA §
SR B W o2 0000000015
B[7:0] — ;.<xxxxxxx>:>:x§:x}\

DE

ASZIR] 1920%1080@60 FIALAANS , VELII FF S0 F -

VESA MONITOR TIMING STANDARD

Adopted: 11/17/08
Resolution: 1920 x 1080 at 60 Hz (non-interlaced)
EDID ID: DMT ID: 52h; STD 2 Byte Code: (D1, COh; CVT 3 Byte Code: n/a

Method: *** NOT CVT COMPLIANT *#**
Per CEA-861 --- 1080p {Code 16) Timing Definition
Detailed Timing Parameters

Timing Name = 1920 x 1080 (@ 60Hz;
Hor Pixels = 1920 // Pixels
Ver Pixels = 1080; // Lines
Hor Frequency = 67.500; /1 kHz = 148usec / line
Ver Frequency = 60.000; /1 Hz = 167msec / frame
Pixel Clock = 148.500; /{ MHz = 6.7 nsec +0.5%
Character Width = 4 //Pixels = 26.9nsec
Scan Type = NONINTERLACED; // HPhase = 1.4 %
Hor Sync Polarity = POSITIVE //HBlank = 127% of HTotal
Ver Sync Polarity = POSITIVE //VBlank = 4.0% of VTotal
Hor Total Time = 14.815; /f(usec) = 550 chars = 2200 Pixels
Hor Addr Time = 12.929, /{(usec) = 480 chars = 1920 Pixels
Hor Blank Start = 12.929, ff{usec) = 480 chars = 1920 Pixels
Hor Blank Time = 1.886; /f (usec) = 70 chars = 280 Pixels
Hor Sync Start = 13.522; /f(usec)y = 502 chars = 2008 Pixels
/f HRight Border = 0.000; M (usec) = 0 chars = 0 Pixels
/! HFront Porch = (.593; /f(usec) = 22 chars = 88 Pixels
Hor Sync Time = 0.296; /(usec) = 11 chars = 44 Pixels
/{ HBack Porch = 0.997; /f(usec) = 37 chars = 148 Pixels
// H Left Border = 0.000; /{(usec) = 0 chars = 0 Pixels
Ver Total Time = 16.667; /f(msec) = 1125 lines HT — (1.06xHA)
Ver Addr Time = 16.000; /(msec) = 1080 lines =111
Ver Blank Start = 16.000; /f(msec) = 1080 lines
Ver Blank Time = 0.667; /f(msec) = 45 lines
Ver Sync Start = 16.059; /f(msec) = 1084 lines
/f V Bottom Border = 0.000; /f (msec) = 0 lines
/1'V Front Porch = 0.059; /f (msec) = 4 lines
Ver Sync Time = 0.074; /(msec) = 5 lines
/1 V Back Porch = 0.533; ff (msec) = 36 lines
/1 V Top Border = 0.000; /i (msec) = 0 lines

HDMI &7 B E 8 R R FH verilog 9 5 I o i 7 7 AE AR syne_vg SEIRL H &
HIS Py, RE2k AL BUREER pattern_vg IRYEAR R AP ENL B, RIZIHBOAIAT o 218 =
B, SEIRFER.

KA IRBAT I ST 70 A 8 B0, RAEERAT R 3 R BU3E B AR 3R 18 1 B R
X, KBRS .

S
A

4 5.3.2HDMI_PHY BcE&E

MS7200 S5 HMDI #2508 s MS7210 A HMDI &%, &5 1IC il &
%O E5 FPGA 1110 A&, O R IEH M H 7 281 FPGA WX A i T 061k
FHC B e .

2 U. ;A':d‘.‘; -k}

KEYO KEY1 K

hdmi_loop | 72 £ & % MS7200 A1 MS7210 [& B ms72xx_ctl, & FF
MS7200 A1 MS7210 fic. & J{ 1920*1080@60RGB888 fx =, AL & i fL S # 5,
P AT ms72xx_ctl f8FH .

4_5.4 SLLiFRS T

5256 1: hdmi_test

HDMI % R 5% WonBIRE, 73 4 S, IS pll. MS7210 F & Bk
ms72xx_ctl BRI FPE AR syne v, FESEAE R ER pattern vg, DR AR BR
WA, EIS VRSB A S demos.

sys_clk
'FPGA .
: h
- PLL :
i pix_clk cfg clk :
; sync_vg ms72xx_ctl fic— ¥ HDMI OUT
2 |
: vs, hs, de
L +
' pattern vg |——vs, hs, de, r, g. b »

................................

S256 2: hdmi_loop
HDMI & IFE , B MS7200 H2U 1115 545 3 MS7210 B AT SZE HDMI 3%
frt, PAUR ORI, IS EBTE AR demo.

FPGA
PLL
cfgl clk
}
HDMI IN je————iic—] ms72xx _ctl iic HDMI_OUT

pixclk, vs, hs, de, r. g, b

h 4

4 5.5 SCIGIISR

SEEG 1 AR : hdmi_test

ERIT PG2TT0H JHAMCRRoRds, NEAER, FILUE B R4 s 8 %%
%o

SEES 2 LA hdmi_loop

2 0F PG2T70H JF & AR« #L AR A 7 2%, 7 = A B0 JE 2 i K
1920*1080P@60, KN E - HIFR LI, THEFF, 71 LE S EREG 2R 50
AR — S IR .

gt > FFm > BRETRRE

HB7RER 2: U2BH75x ~

R ErEEERE R E

BTEEES

U28H75x "
= BxE 2 BEES AMD Radeon(TM) Graphics

S 1920 = 1080, 60 Hz
| FIMSSE 1920 x 1080, 60 Hz | ENEESRFREY;
(AR B {if
EitEs YCbCrd44
Eita=Sin) FRERIASHE(SDR)
5REE 2 MR NSRS

— N SmeEsE

O R L SHAIIENE, (SRR RS 60 Hz ¥

6.DDR3 FEESLIE T

6.1PG2T70H F &R E 1

PG2T70H F & Hx 4 5% % 51 4Gbit(512MB)ODDR3 it H, 255 MT41K256M16.
DDR3 [525 5 FZ L4 32bit. DDR3SDRAM H & s % di i3 % 800Mbps (151
BEH“PG2T70H &AM FHF)

6.2 SCIWEER

4 i DDR3IP B /742, SZIL DDR3 (KI5 6], 1 AR TAEFF A
BT,

6.3DDR3 $ZHISE =/t

PG2T70H i J #2 it —% 52 % ¥) DDRmemory %l #4775, A E 7750
FB R, K% 2 DDRmemory (], A 41 A

>3 ¥§ DDR3

» 3 FF x8. x16MemoryDevice

» B KAV B8 SCHF 32bit

»SCFRRBTI AXT4 B2 PN

»— AXI4256bitHostPort

» 3 FF Self refresh, Powerdown

> % FF BypassDDRC

» 3 ¥ DDR3WriteLeveling A1 DQSGateTraining

»DDR3 i PR # A 800Mbps

6.4 LIS
6.4.1 % DDR3IP ¥

PDS %355, 7 F30II01 DDR3IP, % LA N5 Bk
(1) DDR3IP 3Cf4: 07 ddr test 1500\ips2t hmic s v1 1l.iar
" ipcore
" logbackup
[th ddr test.pds
[impl.tel
=l pds.log
= stderr.log

= stdoutlog

(2) 1P Zhob k. P 2w 5 EE M) 55 pdf

=2 01 PDSZEIESFM.pdf

<% 02_PDSHREERFM pdf

| = 03 Pz SEEm iEE pdf

¥ 04 FPGARCPLDETE SEHk.pdf

1 05 PDSSmodelsimBtS{HE pdf

6.4.2DDR3 i£E Example T2

1.4TJF PDS %, i TFE ddr3 test, ST K EFR, F7IF IPCompiler;

2.1%+% DDR3IP, W%, #R)5 i Customize;

(@ 1P Compiler 2022.1 - DR Intertace (1.4) jon admin) -
File yiew Preject Help

ChuXx (202 @

- Project Pathname [v1\2_demo\0§_ddr3_test\ipcore\ddri_test\ddrd_test.idf
i Instance Nafe lddr3 test 3.

e Moduls
= (B3 Memory PEE

= [E pistributed RAM
& Distributed FIFO (1.2)
& pistributed ROM (1.3)
& Distributed Shift Regi
& Distributed Simple Dua
& bistributed Single Por

E- (33 DrM

|4l DRM Based Dual Port

Hame COR3 Interface
Version 1.4

Vandor |Pango

Lofommation

— Part (PDS settings)

Famil Logos
4§ DRM Based FIFO (1.6) L gkl W
i DRM Based ROM (1.5) ;| Device BCLSOH =
DEM Based Simple Dual i
& DRM Based Singlas Port ‘| Package FBG4E4 w
= Multiplier
- Speed Grade -€ w

- dF Multiply-Accumalator (1.2
i Multiply-Adder (1.1)
-§ Simple Multiplier (1.2)

& (@ P output & x
-4 PLL (1.5) Initializing ...
Compiling architecture definition.
5- @ system Loaded 21 devices.
=- @ oor Loaded 83 IPs. (10)
B Soft Imperted 1 IP instance.
.
= (31 Ethernet
P LTSN 5
(20/83)
| Ready YN
v N v
3.1 DDR3 & & FtiH Stepl %MW~ i% & :
1 Caiomiar [P - O3 inceriace (14}, etance dar3 hest . - x

DDR3 Interface 1.4 wqos-raLI0H-FBG4E4--6
EEEEEER - - v cviions stop 3 bin/ank options stap & Sammary

 Type options

Please seloct the memory interface type from the Memory Type selection.

Memory Type: noR3 w

~Moda Options

Pleass select the operating mode for memory Interface.

aparating Mode: cont

+ PEY -

~Width Options

Pleane sslect Che data width which memory interface can access at a tine,

[Cleck sattings

Input Clock Frequency: 50,000 T iz {rangs:5-625Hiz)
i Besired Data Bate: 00,000 4 Mbps|range: 600-800Mbps)

Actual Data Rate: 800,0 Mepa

Write and Read Latency

CAS Write Latency (CML): 5 W tCK{range: 5)
CAS Latency (L & w toKirange: 5-8}
Additive Latency(AL): CL-2 LV - - §

~Debug Signals

&/ Enabls Debug Signals

[ready

4.Step2 FZHRWTN I E -

A Custoenize 1P - GORY Intertace {1.4), intance ddr3 test

DDR3 Interface .

Step 1 Basic Optiona _m.m ‘Pinf/Bank Options Step 41 Summary

~ Memory Part

Logos-PGLS0H-FRGA8 1—6

[] create custom Part erdikzse

Please select the memory part.Find an equivalent part or create a part using the *Create Custom Part® button if the part you want is not I

- Drive options

The value of the resistor must be Zdlchm +/-1 perceat,

output Briver tmpedance Contzol:

To calibrate the output driver impedance, an external precision resistor (R2Q) is connected betwsen the 20 ball and VsSSQ.

independently turn onfoff 0OT.

RTT (nominal) -00T: REQ/ -

The OOT fsaturs ia deaigned to improve signal integrity of the memory channel by enabling ths DORI SORAM controllsr to

[Roaay

]

5.Step3 &N~ % E, ‘A% CustomControl/AddressGroup,
TR

(€ Customize IP - DDR3 Intertace (1.4), Irstance ddr3 test

Dlcencrate | | & & B |
[e RS
symbol

= DDR3 Interface 1.i Logos-PGLSOH-FBG484--6

[~ Memory Pin Comstraint File Select

EMAR S R

Please select a fdc file which contains default memory pins constraint.
[| Enable fdc file select

- Control/Address Pin Options

Please select the banks for the Control/Address in the architectural view balow.

Control/Address Bank: B3 ~

Please select the pins for the Control/Address in the architectural view below.

g Enable CS_n(if cs_n is disabled,it should be considered NF maintained LOW through an external resister to GND)

Please select the groups for the Control/Address in the architectural view below.
Custom Control/Address Group |

Confirm to assign Control/Address signals to different pins. Incorrect "Pin Number” will be marked in red.

Slgml Hame Group Number Pin Number

RESET €1 v
CKE fci'] ~ Y3 ~
CcK G8 v T w
cK N] v 15 v
cs Go ~ G& v
RAS GO w7 v
CAS GO v HB v

Ready

@ Customize IP - DOR3 Intertace {14). Instance ddir3_test

Dlcenerate | @ @ & B [E

[[
Symbol

Fx

CAS GO v HE
WE GO v HE
obT GO ~ &7
BA0 GO A F5
BAl GB v W4
BA2 Gé v N7
A0 GE v NE
Al Ge v R4
A2 GE ~ Pé
A3 Gl ~ F3
AS Gl ~ Ed
A6 GE W V3
AT Gl v D2
Ag Ge v U4
AS G8 w =]
AlD G8 v Pe
All GE ~ T4
AlZ Ge ~ 7
A13 I} VAN

Roady

@ Customize 1P - DDRY Intertace (14), Instance ddir3_test

[Gener:

‘Qutput.
Symbol & x

[Ready

s o b @5

A4 GE8 v VS
AS Gl v E4
A6 (=] v V3
A7 Gl v D2
AS Gé W ug
A G8 ~ P5
Al0 GB L
All Gé w T4
Al2 Gé ~ P
Al4 Gé w T3

~Data Pin options

Please select the banks and groups for the data in the architectural view below.

Sigal Name Bank Number Group Number
D10-7] B3 v |l

Dg(8-15) 83 v |6a
DQ(16-23] B3 ~

DQ[24-31] B3 v 62

6.Step4 NMEE, 57 Generate 7] 45 i DDR3IP;

(€ Custormize IP - DORY ntestace (1.4) Instance ddr3 test . - o x

pru s o 0D

output

Symbol

DDR3 Interface 1.: Logos-PGLEOH-FBGA84--6

Step 1: Basic Options Step 2: Memory Options Step 3: Pin/Bank Options

— Basic Options

Memory Type : DOR3
Operating Mode : Controller + PHY
Total Data Width 5 32

bensity i 4cb

volt : 1.5V

Input Clock Frequency ¢ 50.0MHz

Data Rate : 800.0Mbps

Debug Signala : Enabled

Menory options

Memory Part = MTA1K256M16xx-15E
Row Address 118
Column Address 10
Bank Address e

Output Driver Impedance Control : REQ/G
RTT (nominal) -ODT = RIQ/4

~ Pin/Bank Options

Control/Address Bank : B3
cs_n : Enabled
DQL0-7] Bank : B3
bQ[e-15] Bank : B3
DQ(16-23] Bank : B3
DQI24-31] Bank : B3
DQ{0-7) Group : 65
DQ[E-15] Group : G4
DQ(16-23] Group : 63
DQ[24-31] Group)

[Ready |5

7.0k WA L OB, % M B & 47 JF Example I £
2 Demo\07 ddr test 1500\ipcore\ddr3_test\pnr
8T HFINZ S free clk. ref clk A4 FH [A)— Ao 4 -

19 parameter MEM DM WIDTH = MEM DQ WIDTH/8,
20 parameter MEM DQS WIDTH = MEM DQ WIDTH/8,
parameter CTRL_ADDR_WIDTH = MEM ROW_ADDR_WIDTH + MEM BADDR WIDTH + MEM_COL_?
)
input raf_c@ i
E //input free cly .
input rst_board .
3 output pll_lock =
output ddr_init done ,
T
= 28 //uart
30 input uart_rxd .
Q output nart_txd '
output mem rst n ¥
output mem_ck '
g output mem ck n 5
- e e g
3¢ output mem cke '
H— 37
He— 38 output mem _cs_n "
39
40 output mem ras n ’
4 output mem cas n .
= output mem_we_n i
- output mem_odt g
Es] output [MEM ROW_ADDR WIDTH-1:0] mem_a '
o output [MEM BADDR_WIDTH-1:0] mem_ba ¥
E inout [MEM_DQS WIDTH-1:0] mem_dgs v
= inout [MEM_DQS_WIDTH-1:0] mem_dgs_n '
inout (MEM_DQ WIDTH-1:0] mem_dg ¥
< output [MEM DM WIDTH-1:0] mem_dm ,
output reg heart beat led ,
output err flag led
.
o assign freeelk = ref clk ; I

9.0 “Step3 CUHUE BIZI T AR HARE B, 0TI BE] UCE TR AT &
2

% Report Summary - Project Directory test_ddr.v O& x
|N | ® | H © | current device : PeL30H-6FBG484
Timing Constraints -
(=]
UM package view
O Tool1 Tabs 0o& x
. Q I/0 NAME' I/0 DIRECTION Loc BANK veeio IOSTANDARD DRIVE BUS_KEEPER SLEW l
q 1 mem_dq[31] INOUT G3 BANK3 1.5 HSTL15_I 8 NONE FAST
2 mem dg(30] INOUT a4 BANK3 1.5 HSTL1S_I 8 NONE EAST
Os
o= 3 mem_dq[29] INOUT H3 BANK3 1.5 HSTL15_I 8 NONE FAST
-E 4 mem_dg[28] INOUT HS BANK3 1.5 HSTL15_I 8 NONE EAST
5 mem_dq[27] INOQUT F2 BANK3 1.5 HSTL1S_I 8 NONE FAST
6 mem dq[26] INOUT K7 BANK3 1.5 HSTL15_I 8 NONE FAST
7 mem dqg[25] INOUT F1 BANK3 1.5 HSTL1S I 8 NONE EAST

10. LA N E IR 2K 7E LED, (WL G ;
ddr init done OUTPUT B2
err flag led OUTPUT A2

heart beat led OUTPUT B3

pll lock OUTPUT A3

1L A% U S NEHR TP I 167, 1 % Example AEHL41K

E IP Compiler 2022.1 - DDR3 interface (1.4) (on admin) L [=] *

{
File Visw Projsct Help

(o]
[View Datasheet|

Catalog Eroject Pathname P v1\2 demo\0B ddr3 test\ipcore\ddr3 testi\pnr -51-'--|‘-\||| Browse || Proj Path
| Instance Hame »
A
Ip
Name DOR3 Interface

Version 1.4

Vendor Pango

Information

Part (PDS settings)
Family Log
Device

Packagae

Spead Grade

confiquration

cture definition.

6.5 SCIRIR

vE: BIFEALE: 2 Demo\07 ddr test 1500\ipcore\ddr3 _test\pnr
N#EFEF, ATLVEE|LEDI #5%, LED2 %K, LED3 N4k, LED4 &5

(EREELLN 225 i 1 LED %i'5

ddr init done WILE AR & 1

err_flag_led BRI R E 2

heart_beat led LEME S 3

pll_lock Pl 8 € fE7~ 4

7_8. TR EMIA S HIFE

7 8.1PG2T70H F &R B/

PG2T70H W & T £ R =ik 6.375Gbps f&id i 4792 IR, B HSST. JF R
i MESS0HP A 2 #% SFP J64F4% 11, H P RIETOEHE (T | 6.375G Jufkisk bl
THIED HAFNX 2 AL L TR RGBS EIEE A F “PG2T70H JF
RBAEAAE T .

7_8.2 THER
S A S T M e 1) g S
7 8.3HSST &

PGLSO0H P B | £ R Hik 6.375Gbps =i ef AT A, B HSST, &
1 > HSST, 3t 4 M43 THk LANE, &7 PMA, HSSTif#L T 5K PCS
Ihie, W RGN TSR AT E . 7EP= S A3, B HSST S2#F 1~4 M4
W TR LANE. HSST =B A4

FCRFLEIE R 0.6bps-6.375Gbps

» RGNS bk 5 5%

> A i R A HE AR AN 25

> RS [38 B 28V S5 1 A

> # 1 i] 5 FF
8bitonly,10bitonly,8b10b8bit,16bitonly,20bitonly,8b10b16bit,32bitonly,40bitonly,8b1
0b32bit,64b66b/64b67b16bit,64b66b/64b67b32bit FH =

=] RIGHCE) PCS, A3 #F PCIExpressGEN1,PCIExpressGEN2,XAUL TJk
PLA R ,CPRI,SRIO 25 103

> RGN D e

> 3 FF RxClockSlip Ty fig PRI [5 (1) 2 S AT I

> LFEVM R HE 8b10b bt fifh

> LRI UE 64b66b/64b6Tb F i IE L Th A
> RGN CTC T

> RE x2 Ml x4 FEIES E
»HSST ML B X FrEh & 1B
3T i 2 B 0378 3 A [A
>N & PRBS Iifig

XA

©

7_8.4 LRI
7 8.4.1 &35 HSSTIP #%

PDS %%é)5, % T-3h¥s N HSSTIP.
7_8.4.2 KABEMX FlFE

L3THF PDS %, #rid L% hsst test, a0 FEFR, FTH IPCompiler;

a8

Flow Summary

2.1k FE HSSTIP, M4, #AJG M Customize;

(@ IP Compiler 2022.1 - HSST (1.4) fon admin) - o bs
File View Project Help

chbk X | »2n0 8 | @

n Project Pathname v1\2_demo\10_hsst_test\ipcore\hsst_test\hsst_test.idf

IP "
Instance Name Ihsst_testl 0 customuel

DRM Based Dual Port RAM
DEM Based FIFO (1.6)
DRM Based ROM (1.5) Hame HSST
DRM Based Simple Dual [
DRM Based Single Port f
B+ (@) Multiplier Vendor Pango

& Multiply-Accumulator (1.2

f Multiply-Adder (1.1)

Ja Simple Multiplier (1.2)

- IP

Version 1.4

) 6 G &

Informat

—Part (PDS settings)

E- @ PLL) :
ﬂ: PLL (1.5) Family Logos W
& [systen Device PGL50H v
E- (@ oorR
E- @ soft Package FBG484 v
48} DDR3 Interface (1.4)
£+ (@ Ethernet SgmabGradad - & b >
= (3 HssT
Qutput -

Initializing ...

Compiling architecture definition.
Loaded 21 devices.

Loaded 83 IPs. (10}

Imported 1 IP instance.

= (@@ pcle
fi PCI Express (1.3)
- (@ Tools
= 3 pebug
Q bDebugCore (1.3)
& Jtag_Hub (1.3)

(20/83)

il'.eady ‘ SYN

3.#f HSST ¥ & %1 9 ProtocolandRate #2841 N i% B, Channel0Channell &
DISABLE, Channel2Channel3 >4 Fullduplex:

@ Customire IP - HSST (1.4) Instance hsst test - 8 X

Dleerae | @ 2 © 3 |HB)]

output

Symbol & x
HSST 1.4 1ogos-PGLSOH-FBGIBE--6

IR o e

Channel 0 channel 1 Channel 2 Channel 3
Channel ENABLE

w w | Fullduplex v | Fullduplex w

Protocol and Line Rate

Protocol v v v v
T% Line Rate(0.6~6.375) (Gbps) 0.000 : s 5.000000 —) -
RX Line Rate(0.6~6.375) (Gbps) 0.000 ¥ s 5.000000 s 500 s
~ BCS Encoder/Decoder, Fabric Interface Data Width and Clock Frequence

TX Encoder v v | EBLOB v v
TH Fabric Data Width(Bits) v v |32 v v
™« Fabric Clock Frequence 125.000000 MHz 125.,000000 Mz

RX Decoder v v |eB10B v v
EX Fabric Data Width{Bits) v v |3z v v
X Fabrlc Clock Frequence 125.000000 MHz 125.000000 MHz

~ PLL Configuration

Use PLL Numbers v
PLL Reference Clock source from Difr_REFCKO v
PLL Reference Clock frequence (MHz) |125,000000 w

[Roaty

4.AlignmentandCTC #% R U1 T E :

(E Custornice IP - HSST (1.4), Instance hust_test & %

Dlenerae | @ @ © 2 | [
| =])
-
Symbol & x
HSST 1.4 Logos-PGLSOH-FBGAS4--6
erotocol and Rats uise
Channel 0 Channel 1 Channel 2

5Misc #ZHEUN N 1% B, Al Generate A] A4 HSSTIP:

€ Customize P HSST (19) itance s test 5 x

Dlewents| @ 3 © 2 | 3B

Configure Output

Symbol & %

HSST 1.4 Logos-PGLSOH-FBG484--6

Protocol and mate Alignment and CTC
Chan
usnce Cor

Ready

6. RAA TR, LILEEIEFT I Example TF2:

2 Demo\8 hsst test\ipcore\hsst test\pnr\example design

78 T REAEJT KR LI2AT, FxdTJESCAF hsst_test_dut_top IR ALBEATEL
PRI A 10 _hsst_test IR0 Z 304

St 8 OO

f/ Filename:
! FHEEEELEEREELELS R EER L L LR LRSS E L L LT E i d i tifitsts
“timesecals 1lns/100fs

1
1%
8 B
s [l 20 B mocuie ENE——
22 input i free clk ¥
3 23 input rst_n .
24 // input i pll rst O bk
E 25 !/ input i wtchdg clr D ot
output [1:0] o_wtchdg_ast 0 '
Q 27 output o pll done 0 '
2 output c_txlana_done_Z '
Q 29 output o_txlane done 3 '
30 output o_rxlane_cone 2 '
= 31 output o_rxlane_done 3 '
32 input i_p refckn 0 '
B 33 input ip refckp o P
34 output o p pll lock O '
E 15 output o_p_rx_slgdet_sta_2 '
3 output o_p_rx_sigdet_sta 3 '
= 7 output o p lx cdr align 2 ’
= 38 output o p 1lx cdr_align_3 '
39 output o_p pcs_lsm _synced 2 '
40 output o p pes lam synced 3 '
¥ 41 input i p 12rxn i
¢= 42 input i p l2rxp f
43 input i p 13rxn '
s 24 input i p 1l3rxp ’
4= output o p 12txn '
ﬁ A output o p l2txp '
- 47 output o p l3txn '
A 'S i il

F:ﬁpMSEDHPmESEDHE_vI#Z_dmf 10_hsst_test/ipcore/hsst_test/example_design/rtl/hsst

Console

@ | Welcome to PANGCO Tel Console.

SABCE AT IC, T IEE A HEEEEL 10 hsst_test filF2E;

1 1 [1 3 ~MOS3
e U
rd DUTE

9.2E47 Debugger 1% AT, HAF LB AE “PDS tRIEMH T .pdf;

4tk Select Net = [w}

Schematic Graph

‘:'}e }De \:ﬂ; '-)-:’4 ":;Q M ﬁ ‘EI .‘.j y g @} Clock

U_INST/o_rzd

U_INST/i_txk

PR W

150

Net/Netbus Name Source Insta

Move Nets

Ready ‘ Inverse Nets Move

OK Cancel

10.°]#% LR 7 EF IP W P F685, 1 % Example BB 2H ks

Up

-]

2

B ¢ ¢ i &

@

7 8.5 IR

K2 PG2T70H H A A A —% SFP #2110, L P R SEH R =, —h
AR R, —HuRRE, BIRMEAThfIRe . S Msh B N 2 BB N PR
(1) SFP #2110 (H P BRI SEeiid) , #47 Debugger fEZ U, W LAER NHE
) 3R R 1 i — B

I

9.LAK P& 36 L0 32

9.1 L4 HAY

21N E FPGA _EAEFH RGMIL (A6 T IR BEAASR 3L 1) Prsl SEILELR
MBS . DA BRI S2ER UK PHY o6 A)b E A FE R B AL FE,
f& PHY BEWS L85 S0 A0 TAE . [R5 ST 4nfaf s F util_gmii_to_rgmii kR, SZI
GMII (FIREEASSIEE) (555 RGMIL {55 2 8 (54, fiitdk FPGA A #AH
H GMII 1fif PHY 81 F RGMII [] .

9.2 LR IR

GMII J& FH FTFIC LR B bR 0,] 8 AL Adi Bk, Ar i) R dk s
TS Ak, BB A B e B TR AR S . RGMIL st 4 FH XU fid o A 4 o7 508
2, BE OSBRSS AR R . BRI B B TR T R
Wr At . BT FPGA P38 1 GMIL {55, Mi~h PHY o8&/ AT 2Rl RGMII
B, UL E@E util gmii to rgmii B, SZIL GMIL 5 RGMII {5 5 HI XU]
Fed, Wik FPGA 5 PHY 22 I8 (0 55cd i 15 i o

PHY 05 Jy 78 1 HL S 75 2 — 8 R R HEAT N 3R 27 A7 28 IR L A B ke o it
power on_rst fik, FIF RGimH4b sys clk, PoE—ANERERES phy st n.
ZAEHLE TR E = (i Soms) , ARERIRE NS S, Hift PHY
O P R R IR 5E BRI EA AL, o

9.3 T#Zi}iFA

9.3.1 TRER G iH#

PEBIRETZ AR 4 Fr s -

1. “timescale 1ns / 1ps

2. /111111177117 771777177777777777177777717177777177771711717771771717117177
[1717711711717717
3. // Module Name: ethernet_test

A S11111T11777077777771777771117177777171177777111177771111117777117
I1171177711711777

5. module ethernet_|test(

6. input sys_clk,

1. input rst_n,

8. output phy rst_n,

9. output e_mdc,

10. inout e_mdio,

11. output[3:0] rgmii_txd/*synthesis PAP_MARK_DEBUG = "ture"*/,

12. output rgmii_txctl/*synthesis PAP_MARK_DEBUG = "ture"*/,

13. output rgmii_txc/*synthesis PAP_MARK_DEBUG = "ture"*/,

14. input[3:0] rgmii_rxd/*synthesis PAP_MARK_DEBUG = "ture"*/,

15. input rgmii_rxctl/*synthesis PAP_MARK_DEBUG = "ture"*/,

16. input rgmii_rxc/*synthesis PAP_MARK_DEBUG = "ture"*/,

17. output[3:0] led

18.)

19. wire reset_n;

20. wire [7:0] gmii_txd;

21. wire gmii_tx_en;

22. wire gmii_tx_er;

23. wire gmii_tx_clk;

24. wire gmii crs;

25. wire gmii_col;

26. wire [7:0] gmii_rxd/*synthesis PAP_MARK_DEBUG = "ture"*/;

27. wire gmii_rx_dv/*synthesis PAP_MARK_DEBUG = "ture"*/;

28. wire gmii_rx_er/*synthesis PAP_MARK_DEBUG = "ture"*/;

29. wire gmii_rx_clk;

30. wire [1:0] speed_selection; // 1x gigabit, @1 10@Mbps, 00 10
mbps

31. wire duplex_mode; // 1 full, @ half

32. wire rgmii_rxcpll;

33. assign speed_selection = 2'b1e;

34. assign duplex_mode = 1'bl;

35. wire sys_clk;

36. wire sys_clk_w;

37. wire led_r;

38.

39. wire e _rx_dv 5

40. wire [7:0] e_rxd 5

41. wire een K

42. wire [7:0] e

43.

wire e rst n g

44,

45.
46.

47.
48.

49.
0.
ol.
o2.
53.
o4.
95.
6.

o7.

28.

99.

//assign led =~led r;
/**

3k % 3k %k 3k %k %k %k %

generate single end clock
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 5k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k %k 3k 3k 3k 3k %k 3k 3k 5k %k 3k 3k 3k %k 3k 3k %k >k 5k 3k %k %k 3k %k %k k %k %k kk

*********/

power_on_rst #

60.

61.
62.
63.

(
.CLK_FRE(50),
.DELAY_MS(50)
)
reset_power_on_m@
(
.clk (sys_clk)
.rst_n (rst_n) g
//user reset high active
.power_on_rstn (phy_rst_n)
//power on reset low active
)
//assign phy rst n = 1'bl;

util_gmii_to_rgmii util_gmii_to_rgmii_meo(

64.

65.
66.
67.
68.
69.
70.

71.

72
73

4.
75.

76.

7.
78.
79.
80.
81.

.reset (1'b0),
.rgmii_td (rgmii_txd),
.rgmii_tx_ctl (rgmii_txctl),
.rgmii_txc (rgmii_txc),
.rgmii_rd (rgmii_rxd),
.rgmii_rx_ctl (rgmii_rxctl),
.gmii_rx_clk (gmii_rx_clk),
. // .gmii_txd (gmii_txd),
. // .gmii_tx_en (gmii_tx_en),
.gmii_txd (e_txd),
.gmii_tx_en (e_tx_en),
.gmii_tx_er (1'be),
.gmii_tx_clk (gmii_tx_clk),
.gmii_crs (gmii_crs),
.gmii_col (gmii_col),
.gmii_rxd (gmii_rxd),

82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
33.
94.

.rgmii_rxc

.gmii_rx_dv
.gmii_rx_er

(rgmii_rxc),//add

(gmii_rx_dv),
(gmii_rx_er),

.speed_selection(speed selection),

.duplex_mode
.led
.sys_clk

)s

(duplex_mode),
(led[0]),
(sys_clk)

wire [31:0] pack_total len;

95. gmii_arbi arbi_inst

96.
97.
98.
99.

(

.clk
.rst_n
.speed

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.

118.
119.
120.
121.

i

122

1125,
124.

.link

.pack_total 1len

.e_rst_n
.gmii_rx_dv
.gmii_rxd
.gmii_tx_en
.gmii_txd
.e_rx_dv
.e_rxd
.e_tx_en
.e_txd

)5

(
.gmii_tx_clk
.gmii_rx_clk
.rst_n

(gmii_tx_clk)

(rst_n

)s

(speed_selection),

(1'b1

)s

(pack_total 1len)

(e_rst n)
(gmii_rx_dv)
(gmii_rxd)
(gmii_tx_en)
(gmii_txd)
(e_rx_dv)
(e_rxd)
(e_tx_en)
(e_txd)

mac_test mac_testo

(gmii_tx_clk),

(gmii_rx_clk) ,

(rst_n),

.pack_total 1len

d125000000 pack total len

//
//

.gmii_rxd

.gmii_rx_dv

(32'd125000000

(gmii_rx_dv),

(gmii_rxd),

),//d25000000

125.

126. .pack_total len (pack_total_len),//d25000000
d125000000 pack total len

127. .gmii_rx_dv (e_rx_dv),

128. .gmii_rxd (e_rxd),

129.

130. .gmii_tx_en (gmii_tx_en),

131. .gmii_txd (gmii_txd)

132.

133.);

134. endmodule

e, B CEHE T RGN sys_clk. EA{ES rst_n DL PHY
SHAAZHMES. Hd, phy rst n &2 PHY &AM EAES, e mde Al e mdio
J& FHF MDIO £ 1 (103 B AR s Bl R B 28, R EARRS R A — B .
rgmii_txd. rgmii txctl. rgmii txc /& RGMII 2) Ki%&im(ES, T AK%EEHE.
RAEPEHIA R IER . rgmii rxd. rgmii_rxctls rgmii_rxc f& RGMII 4% ({32050
5%, AFECEdE. Blicsm MBI 5. led FF %42 LED 840, Bt
RIBATIRES .

FERSH YR, 58 LT — RIBIE 5ok AT GMIT £ 1B &% . gmii_txd.
gmii_tx_en. gmii_rxd. gmii_rx_dv 55 5 H T GMII £ 1 R KX FHEIL
speed_selection 1 duplex_mode # 1 & A H 4L, 477124 2610 F1 1'b1, FnF% PHY
O Fr T B AT IR AT T 260 4 0 T AR

ok, ARRLSEHItE T —A power on rst fEER, FF7E L HEX PHY $&H
BEATREI S A7 . IXAMEHUE L RGN B sys_clk R EZ S5 st n, 7E LSS
FER) 50 ZF> (S % DELAY MS(50)#87€) » RJERET PHY M EAE 5
phy_rst_n. XHiLR T PHY &5 A B8 IR T PvIiatt .

SRJG, AREBSZFIAL T util_gmii to rgmii BEH, IXAMEER /R A& S2BL GMIT
A RGMII 42 A 2 [Al M5 54, T FPGA W E5EH £ GMIL #10, i PHY
SRR RGMIL 1, FULHREIATE S0 # . ZHEPIUERE T GMIL I
FORFHENAZ 5 AR R RGMILAE 5, [FINACE T A A (A
B, EERERERIER, gmii txd 1 gmii tx_en ZEHHIZ e txd Al e tx_en,
X RIS RIE B R B T ARSI AR, WA R EEM GMIL 1K,

TR, RIDSEBIL T —A gmii_arbi Bid, EEEBOMEM . XAk

F T EE GMIL % 5 MAC M 8] (1 s A4 4 . T H200CR H PHY (1 GMIL
W5 gmii_rx_dv M gmii_rxd, ¥ HALELS MAC MR GBI e_rx_dv
e rxd) o [FR, EEBCKEE MAC MABER P RIEE S e tx en flle txd, IF
it GMIL K 3%(5 5 gmii tx_en Ml gmii_ txd K k% %) PHY . X Fhdit{#15
MAC A H AT DL F 508 1) AR ORAR 3, 1T AN 0 b 3RS J2 1) GMIT 42 1140
o

BeJa s ARG T —A mac_test #55ER, T A sl i it 0 5 50 T B0 2
(IR o 2 A P R AR AN SN B gmii tx_clk A1 gmii rx_clk, DL EAAES
rst_n. pack total len & —/ 32 hifff5 5, Rl TH8 @ B AR IE MR 6B K.
mac_test I FZWK B gmii arbi BIH 2 CEHE e < dv Ml e rxd, FFE T
gmii_tx_en fl gmii_txd & i%EHH .

SRS, XML 7 — A 5w B0 LUK WIS A & . il
power on_rst BEER, Hiff PHY &5 H 78 LB A 18] R A7 util gmii to rgmii HEERfE
P 7 GMII 5 RGMIT £ MR35 7] #. gmii_arbi #5551 57 2008 10 o #o R4 326
#113 MAC JZ S mT USR] 2 5 A7 5008 1) S 16 AU . mac_test BEHR U %
TR BORBSAE R 0, S LUK @A (19 T A PR

9.3.2util_gmii_to_rgmii HEIR}R

util gmii_to rgmii BHRITPEIL WIS Fros:

module util gmii to rgmii (
reset,
rgmii td,
rgmii tx ctl,
rgmii txc,
rgmii rd,

Co Bl ©0° ICHl = el I Ran

rgmii rx_ctl,

©

gmii rx_clk,

PA
=

rgmii rxc,

—_ =
DN —

gmii_ txd,
gmii tx en,

PA
&0

gmii_ tx er,

PA
G

gmii tx clk,

15. gmii crs,

16. gmii_col,

17. gmii_rxd,

18. gmii_rx_dv,

19. gmii_rx_er,

20. speed_selection,
21. duplex_mode,

22. led,

23. pll_phase_shft_lock,
24. clk,

25. sys_clk

26.);

27. input sys_clk;
28. output pll_phase shft_lock;
29. output clk;

30. output reg led;

31. input rgmii_rxc;//add
32. input reset;

33. output [3:0] rgmii_td;

34. output rgmii_tx_ctl;
35. output rgmii_txc;
36. input [3:0] rgmii_rd;

37. input rgmii_rx_ctl;
38. output gmii_rx_clk;
39. input [7:0] gmii_txd;

40. input gmii_tx_en;
41. input gmii_tx_er;
42. output gmii_tx_clk;
43. output gmii_crs;

44. output gmii_col;

45. output [7:0] gmii_rxd;

46. output gmii rx_dv;
47. output gmii_rx_er;

48. input [1:0] speed_selection; // 1x gigabit, 01 106Mbps, 00
1ombps

49. input duplex_mode; // 1 full, © half

50.

5l. wire gigabit;

52. wire gmii_tx_clk_s;

53. wire gmii_rx_dv_s;

54.

55. wire [7:0] gmii_rxd_s;

56. wire rgmii_rx_ctl delay;

57. wire rgmii_rx_ctl_s;

58. // registers

59. reg tx_reset_di;

60. reg tx_reset_sync;
6l. reg rx_reset_di;

62. reg [7:0] gmii_txd_r;

63. reg gmii_tx_en_r;
64. reg gmii_tx_er_r;
65. reg [7:0] gmii_txd_r_di;
66. reg gmii_tx_en_r _di;
67. reg gmii_tx_er_r_di;
68.

69. reg rgmii_tx_ctl_r;
70. reg [3:0] gmii_txd_low;
71. reg gmii_col;

72. reg gmii_crs;

73.

4. reg [7:0] gmii_rxd;

75. reg gmii_rx_dv;

76. reg gmii_rx_er;

77. wire padtl ;

78. wire padt2 ;

79. wire padt3 5

80. wire padt4 ;

81. wire padt5 5

82. wire padt6 5

83. wire stx_txc

84. wire stx_ctr

85. wire [3:0] stxd_rgm ;

86. assign gigabit = speed_selection [1];
87. assign gmii_tx_clk = gmii_tx_clk_s;
88. assign gmii_tx_clk_s = gmii_rx_clk;
89.

90. //test led

91. reg[28:0] cnt_timer;

92. always @(posedge gmii_tx_clk_s)
93. begin

94. cnt_timer<=cnt_timer+1'bl;

95. if(cnt_timer==29'h3ffffff)

96. begin

97. led=~led;

98. cnt_timer<=29'ho;
99. end

100. end

101.

102.

wire gmii_rx_clk;

103.

104.

105. //GTP_CLKBUFG GTP_CLKBUFG_RXSHFT(
106. // .CLKIN (rgmii_rxc),

107. // .CLKoUT (gmii_rx_clk)

108. //);

109.

110. wire rx_clki_shft;

I11. pl1_sft U_pll phase_shift(

112. .clkout® (rx_clki_shft) //125MHz
113. .clkini (rgmii_rxc),
114. .clkfb (gmii_rx_clk)s
115. .rst (1'bo)
116. .lock ()

117.);

118.

119. GTP_CLKBUFG GTP_CLKBUFG_RXSHFT(

120. .CLKIN (~rx_clki_shft),
121. .CLKOUT (gmii_rx_clk)
122.);

123. //assign gmii_rx_clk=rgmii_rxc;

124. always @(posedge gmii_rx_clk)

125. begin

126. gmii_rxd = gmii_rxd_s;

127. gmii_rx_dv = gmii_rx_dv_s;

128. gmii_rx_er = gmii_rx_dv_s * rgmii_rx_ctl_s;

129. end

130.

131. always @(posedge gmii_tx_clk_s) begin

132. tx_reset_d1 <= reset;

133. tx_reset_sync <= tx_reset di;

134. end

135.

136. always @(posedge gmii_tx_clk_s)

137. begin

138. rgmii_tx_ctl r = gmii_tx_en_r ~ gmii_tx_er_r;

139. gmii_txd low = gigabit ? gmii_txd r[7:4] : gmii _txd r[3:0]
5

140. gmii_col = duplex_mode ? 1'bo : (gmii_tx _en_r| gmii_tx

141.

gmii_crs

end

_er_r) & (gmii_rx_dv | gmii_rx_er) ;
= duplex _mode ? 1'b0 :

_er_r| gmii_rx_dv | gmii_rx_er);
142.

(gmii_tx_en_r| gmii_tx

143.
144. always @(posedge gmii_tx_clk_s) begin

145. if (tx_reset_sync == 1'bl) begin
146. gmii_txd_r <= 8'ho;

147. gmii_tx_en_r <= 1'b0;

148. gmii_tx_er_r <= 1'b0;

149. end

150. else

151. begin

152. gmii_txd_r <= gmii_txd;

153. gmii_tx_en_r <= gmii_tx_en;

154. gmii_tx_er_r <= gmii_tx_er;

155. gmii_txd_r_d1 <= gmii_txd_r;
156. gmii_tx_en_r_dl <= gmii_tx_en_r;
157. gmii_tx_er_r_dl <= gmii_tx_er_r;
158. end

159. end

160.

161.

162.

163.

164, //------ - mmmmm -
165. GTP_OSERDES_E2 #

166. (

167. . GRS_EN ("TRUE"),

168. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
169. . TSERDES_EN ("FALSE"),

170. . UPD®_SHIFT_EN ("FALSE"),
171. . UPD1_SHIFT_EN ("FALSE"),
172. . INIT_SET (2'b@0),

173. . GRS_TYPE_DQ ("RESET"),

174. . LRS_TYPE_DQ@ ("ASYNC_RESET"),
175. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
176. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
177. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
178. . GRS_TYPE_TQ ("RESET"),

179. . LRS_TYPE_TQ@ ("ASYNC_RESET"),
180. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
181. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
182. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
183. . TRI_EN ("FALSE"),

184. . TBYTE_EN ("FALSE"),

185. . MIPI_EN ("FALSE"),

186. . OCASCADE_EN ("FALSE")

187.) GTP_OSERDES_E2_INST1 (

188. . RST (tx_reset_sync),

189. . OCE (1'b1),

190. . TCE (1'bo),

191. . OCLKDIV (gmii_tx_clk_s),

192. . SERCLK (gmii_tx_clk_s),

193. . OCLK (gmii_tx_clk_s),

194. . MIPI_CTRL (),

195. . UPD@_SHIFT (1'be),

196. . UPD1_SHIFT (1'be),

197. . OSHIFTIN® (),

198. . OSHIFTIN1 (),

199. . DI ({6'de,gmii_txd_low[3],gmii_txd_r_di[3]}), // DDR captur
e data

200. . TI (),

201. . TBYTE_IN (),

202. . OSHIFTOUT® (),

203. . OSHIFTOUT1 (),

204. . DO (stxd_rgm[3]),

205. . TQ (padt2)

206.);

207.

208. GTP_OUTBUF gtp_outbuf2

209. (

210.

211. I(stxd_rgm[3]),

212. .O(rgmii_td[3])

213.);

215. GTP_OSERDES_E2 #

216. (

217. . GRS_EN ("TRUE"),

218. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
219. . TSERDES_EN ("FALSE"),

220. . UPD@_SHIFT_EN ("FALSE"),
221. . UPD1_SHIFT_EN ("FALSE"),
222. . INIT_SET (2'bee),

223. . GRS_TYPE_DQ ("RESET"),

224. . LRS_TYPE_DQ® ("ASYNC_RESET"),
225. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
226. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
227. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
228. . GRS_TYPE_TQ ("RESET"),

229. . LRS_TYPE_TQ® ("ASYNC_RESET"),

230. .
231. .
2S5 o
233. .
234. .
235. .
236. .

237.

238. .
239. .
240. .
241. .

242.

243. .
244. .
245. .
246. .
247. .
248. .
249. .

250.

251. .
255,
203. .
254. .

259.
256.

);

257.
258.
. GTP_OUTBUF gtp_outbuf3

259

260.

(

261.
262.

263.

265

266.

LRS_TYPE_TQ1 ("ASYNC_RESET"),
LRS_TYPE_TQ2 ("ASYNC_RESET"),
LRS_TYPE_TQ3 ("ASYNC_RESET"),
TRI_EN ("FALSE"),

TBYTE_EN ("FALSE"),

MIPI_EN ("FALSE"),
OCASCADE_EN ("FALSE")
GTP_OSERDES_E2_INST2 (

RST (tx_reset_sync),

OCE (1'b1),

TCE (1'bo),

OCLKDIV (gmii_tx_clk_s),

. SERCLK (gmii_tx_clk_s),

OCLK (gmii_tx_clk_s),

MIPI_CTRL (),

UPD@_SHIFT (1'be),

UPD1_SHIFT (1'be),

OSHIFTINO (),

OSHIFTIN1 (),

DI ({6'do,gmii_txd_low[2],gmii_txd_r_di[2]}),

. TI (),

TBYTE_IN (),
OSHIFTOUT® (),
OSHIFTOUT1 (),

DO (stxd_rgm[2]),

. TQ (padt3)

I(stxd_rgm[2]),
.O(rgmii_td[2])

. GTP_OSERDES_E2 #

(

267. .
268. .
269. .
270. .
271. .
2%

273.

GRS_EN ("TRUE"),

OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
TSERDES_EN ("FALSE"),

UPD@_SHIFT_EN ("FALSE"),
UPD1_SHIFT_EN ("FALSE"),

INIT_SET (2'b00),

. GRS_TYPE_DQ ("RESET"),

274. . LRS_TYPE_DQ® ("ASYNC_RESET"),
275. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
276. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
277. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
278. . GRS_TYPE_TQ ("RESET"),

279. . LRS_TYPE_TQ® ("ASYNC_RESET"),
280. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
281. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
282. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
283. . TRI_EN ("FALSE"),

284. . TBYTE_EN ("FALSE"),

285. . MIPI_EN ("FALSE"),

286. . OCASCADE_EN ("FALSE")

287.) GTP_OSERDES E2 INST3 (

288. . RST (tx_reset_sync),

289. . OCE (1'bl),

290. . TCE (1'be),

291. . OCLKDIV (gmii_tx_clk_s),
292. . SERCLK (gmii_tx_clk_s),
293. . OCLK (gmii_tx_clk_s),

294. . MIPI_CTRL (),

295. . UPD@_SHIFT (1'b@),

296. . UPD1_SHIFT (1'b@),

297. . OSHIFTINO (),

298. . OSHIFTIN1 (),

299. . DI ({6'de,gmii_txd_low[1],gmii_txd _r_di[1]}),
300. . TI (),

301. . TBYTE_IN (),

302. . OSHIFTOUTO (),

303. . OSHIFTOUT1 (),

304. . DO (stxd_rgm[1]),

305. . TQ (padt4)

306.);

307.

308.

309. GTP_OUTBUF gtp_outbuf4

310. (

311. LI(stxd_rgm[1]),

312. .0(rgmii_td[1])

313.);

316. GTP_OSERDES_E2 #
317. (

318. . GRS_EN ("TRUE"),

319. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
320. . TSERDES_EN ("FALSE"),

321. . UPD@_SHIFT_EN ("FALSE"),
322. . UPD1_SHIFT_EN ("FALSE"),
323. . INIT_SET (2'bee),

324. . GRS_TYPE_DQ ("RESET"),

325. . LRS_TYPE_DQ® ("ASYNC_RESET"),
326. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
327. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
328. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
329. . GRS_TYPE_TQ ("RESET"),

330. . LRS_TYPE_TQ® ("ASYNC_RESET"),
331. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
332. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
333. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
334. . TRI_EN ("FALSE"),

335. . TBYTE_EN ("FALSE"),

336. . MIPI_EN ("FALSE"),

337. . OCASCADE_EN ("FALSE")

338.) GTP_OSERDES_E2_INST4 (

339. . RST (tx_reset_sync),

340. . OCE (1'b1),

341. . TCE (1'be),

342. . OCLKDIV (gmii_tx_clk_s),
343. . SERCLK (gmii_tx_clk_s),

344. . OCLK (gmii_tx_clk_s),

345. . MIPI_CTRL (),

346. . UPD@_SHIFT (1'b@),

347. . UPD1_SHIFT (1'b@),

348. . OSHIFTINO (),

349. . OSHIFTIN1 (),

350. . DI ({6'do,gmii_txd low[@],gmii_txd r_di[@]}),
3b1. . TI (),

352. . TBYTE_IN (),

353. . OSHIFTOUTO (),

354. . OSHIFTOUT1 (),

35b. . DO (stxd_rgm[@]),

356. . TQ (padt5)

357.);

358.

359.

360. GTP_OUTBUF gtp_outbuf5

361. (

362.

363. .I(stxd_rgm[o]),

364.

365. .0(rgmii_td[@])

366.);

367, /)= mm e
368. GTP_OSERDES E2 #

369. (

370. . GRS_EN ("TRUE"),

371. . OSERDES_MODE ("DDR2TO1_SAME_EDGE"),
372. . TSERDES_EN ("FALSE"),

373. . UPD@_SHIFT_EN ("FALSE"),
374. . UPD1_SHIFT_EN ("FALSE"),
375. . INIT_SET (2'bee),

376. . GRS_TYPE_DQ ("RESET"),

377. . LRS_TYPE_DQ® ("ASYNC_RESET"),
378. . LRS_TYPE_DQ1 ("ASYNC_RESET"),
379. . LRS_TYPE_DQ2 ("ASYNC_RESET"),
380. . LRS_TYPE_DQ3 ("ASYNC_RESET"),
381. . GRS_TYPE_TQ ("RESET"),

382. . LRS_TYPE_TQ® ("ASYNC_RESET"),
383. . LRS_TYPE_TQ1 ("ASYNC_RESET"),
384. . LRS_TYPE_TQ2 ("ASYNC_RESET"),
385. . LRS_TYPE_TQ3 ("ASYNC_RESET"),
386. . TRI_EN ("FALSE"),

387. . TBYTE_EN ("FALSE"),

388. . MIPI_EN ("FALSE"),

389. . OCASCADE_EN ("FALSE")

390.) GTP_OSERDES_E2_INSTO (

391. . RST (tx_reset_sync),

392. . OCE (1'b1),

393. . TCE (1'be),

394. . OCLKDIV (gmii_tx_clk_s),
395. . SERCLK (gmii_tx_clk_s),
396. . OCLK (gmii_tx_clk_s),

397. . MIPI_CTRL (),

398. . UPD@_SHIFT (1'be@),

399. . UPD1_SHIFT (1'b@),

400. . OSHIFTINO (),

401. . OSHIFTIN1 (),

402. . DI ({6'de,rgmii_tx_ctl r,gmii_tx_en_r_d1}),
403. . TI (),

404. . TBYTE_IN (),

405. . OSHIFTOUT® (),

406. .

407.
408.
409.

410.
411.
. GTP_OUTBUF gtp_outbufl

412

413.

(

414.
415.
416.

417.
418.

419

420.
421.
422.

OSHIFTOUT1 (),

. DO (stx_ctr),
. TQ (padtl)
)

JI(stx_ctr),
.O(rgmii_tx_ctl)

. GTP_OSERDES_E2 #

(

423. .

424.
425.

426. .
427. .

428.

429. .
430. .

431.

432. .
433. .
434. .
435. .
436. .

437.

438. .
439. .

440.
441.
442.
443.

444. .
445. .

446.

447. .
448. .

449.

. GRS_EN ("TRUE"),
. OSERDES_MODE ("DDR2TO1_SAME_EDGE"),

TSERDES_EN ("FALSE"),

. UPD@_SHIFT_EN ("FALSE"),
. UPD1_SHIFT_EN ("FALSE"),

INIT_SET (2'b00),
GRS_TYPE_DQ ("RESET"),

. LRS_TYPE_DQ® ("ASYNC_RESET"),

LRS_TYPE_DQ1 ("ASYNC_RESET"),
LRS_TYPE_DQ2 ("ASYNC_RESET"),

. LRS_TYPE_DQ3 ("ASYNC_RESET"),

GRS_TYPE_TQ ("RESET"),

LRS_TYPE_TQ® ("ASYNC_RESET"),
LRS_TYPE_TQ1 ("ASYNC_RESET"),
LRS_TYPE_TQ2 ("ASYNC_RESET"),
LRS_TYPE_TQ3 ("ASYNC_RESET"),

. TRI_EN ("FALSE"),

TBYTE_EN ("FALSE"),
MIPI_EN ("FALSE"),

. OCASCADE_EN ("FALSE")

GTP_OSERDES_E2_INST5 (

. RST (tx_reset_sync),
. OCE (1'b1),

TCE (1'b@),
OCLKDIV (gmii_tx_clk_s),

. SERCLK (gmii_tx_clk_s),

OCLK (gmii_tx_clk_s),
MIPI_CTRL (),

. UPD@_SHIFT (1'b0),

450. . UPD1_SHIFT (1'b@),

451. . OSHIFTIN® (),

452. . OSHIFTIN1 (),

453. . DI (8'b0ORERAL),

454. . TI (),

455. . TBYTE_IN (),

456. . OSHIFTOUT® (),

457. . OSHIFTOUT1 (),

458. . DO (rgmii_txc),

459. . TQ (padté)

460.);

461.

462.

463. //wire [7:0] delay_step b ;

464. //wire [7:0] delay_step gray ;

465. //

466. //assign delay step b = 8'd128; // ©~247 , 1@ps/step

467. //

468. //assign delay step gray=((delay _step b>>1)"delay step b); // o
nly support gray code

469. //

470. //GTP_IODELAY E2 #

A71. //(

472. //.DELAY STEP_SEL ("PORT"),//PORT PARAMETER

473. //.DELAY_STEP_VALUE()

474. //)

475. // GTP_IODELAY E2_inst@ (

476. //.DI (stx_txc), // rx clk input

477. //.DELAY_SEL (1'b1),

AT78. //.DELAY_STEP (delay_step gray),

479. //.DO (rgmii_txc) // rx clk output

480. //);

481.

A82. /)= m -

483. wire [5:0] ncil;

484. GTP_ISERDES_E2 #

485. (

486. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),

487. .CASCADE_MODE ("MASTER"),

488. .BITSLIP_EN("FALSE"),

489. .GRS_EN ("TRUE"),

490. .NUM_ICE(1'b0),

491. .GRS_TYPE_QO("RESET"),

492. .GRS_TYPE_Q1("RESET"),

493. .GRS_TYPE_Q2("RESET"),

494. .GRS_TYPE_Q3("RESET"),

495. .LRS_TYPE_QO("ASYNC_RESET"),
496. .LRS_TYPE_Q1("ASYNC_RESET"),
497. .LRS_TYPE_Q2("ASYNC_RESET"),
498. .LRS_TYPE_Q3("ASYNC_RESET")
499.) gtp_iserdes_insto (

500. .RST(1'b@),

501. .ICE@(1'b1),

502. .ICE1(1'b0),

503. .DESCLK (gmii_rx_clk),

504. .ICLK (gmii_rx_clk),

505. .ICLKDIV(gmii_rx_clk),

506. .DI (rgmii_rd[@]),

507. .BITSLIP(),

508. .ISHIFTINO(),

509. .ISHIFTIN1(),

510. .IFIFO_WADDR(),

511. .IFIFO_RADDR(),

512. .p0({ncl,gmii_rxd_s[4],gmii_rxd_s[@]}),
513. .ISHIFTOUTO(),

514. .ISHIFTOUT1()

515.);

B16. //-=mmm o
517. wire [5:0] nc2;

518. GTP_ISERDES_E2 #

519. (

520. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
521. .CASCADE_MODE ("MASTER"),
522. .BITSLIP_EN("FALSE"),

523. .GRS_EN ("TRUE"),

524. .NUM_ICE(1'b0),

525. .GRS_TYPE_QO("RESET"),

526. .GRS_TYPE_Q1("RESET"),

527. .GRS_TYPE_Q2("RESET"),

528. .GRS_TYPE_Q3("RESET"),

529. .LRS_TYPE_QO@("ASYNC_RESET"),
530. .LRS_TYPE_Q1("ASYNC_RESET"),
531. .LRS_TYPE_Q2("ASYNC_RESET"),
532. .LRS_TYPE_Q3("ASYNC_RESET")
533.) gtp_iserdes_instl (

534. .RST(1'b0),

535. .ICE@(1'b1),

536. .ICE1(1'b0),

537. .DESCLK (gmii_rx_clk),

538. .ICLK (gmii_rx_clk),

539. .ICLKDIV(gmii_rx_clk),

540. .DI (rgmii_rd[1]),

541. .BITSLIP(),

542. .ISHIFTINO(),

543. .ISHIFTIN1(),

544. .IFIFO_WADDR(),

545. .IFIFO_RADDR(),

546. .DO({nc2,gmii_rxd_s[5],gmii_rxd_s[1]}),
547. .ISHIFTOUTO(),

548. .ISHIFTOUT1()

549.);

550, //----- e
551. wire [5:0] nc3;

552. GTP_ISERDES_E2 #

553. (

554. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
555. .CASCADE_MODE ("MASTER"),
556. .BITSLIP_EN("FALSE"),

557. .GRS_EN ("TRUE"),

558. .NUM_ICE(1'b@),

559. .GRS_TYPE_QO("RESET"),

560. .GRS_TYPE_Q1("RESET"),

561. .GRS_TYPE_Q2("RESET"),

562. .GRS_TYPE_Q3("RESET"),

563. .LRS_TYPE_Q@("ASYNC_RESET"),
564. .LRS_TYPE_Q1("ASYNC_RESET"),
565. .LRS_TYPE_Q2("ASYNC_RESET"),
566. .LRS_TYPE_Q3("ASYNC_RESET")
567.) gtp_iserdes_inst2 (

568. .RST(1'b0),

569. .ICE@(1'b1),

570. .ICE1(1'b0),

571. .DESCLK (gmii_rx_clk),

572. .ICLK (gmii_rx_clk),

573. .ICLKDIV(gmii_rx_clk),

574. .DI (rgmii_rd[2]),

575. .BITSLIP(),

576. .ISHIFTINO(),

577. .ISHIFTIN1(),

578. .IFIFO_WADDR(),

579. .IFIFO_RADDR(),

580. .DO ({nc3,gmii_rxd_s[6],gmii_rxd_s[2]}),

581. .ISHIFTOUTO(),

582. .ISHIFTOUT1()

583.);

B84, /) -
585. wire [5:0] nc4;

586. GTP_ISERDES E2 #

587. (

588. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
589. .CASCADE_MODE ("MASTER"),

590. .BITSLIP_EN("FALSE"),

591. .GRS_EN ("TRUE"),

592. .NUM_ICE(1'b@),

593. .GRS_TYPE_QO("RESET"),

594. .GRS_TYPE_Q1("RESET"),

595. .GRS_TYPE_Q2("RESET"),

596. .GRS_TYPE_Q3("RESET"),

597. .LRS_TYPE_QO@("ASYNC_RESET"),

598. .LRS_TYPE_Q1("ASYNC_RESET"),

599. .LRS_TYPE_Q2("ASYNC_RESET"),

600. .LRS_TYPE_Q3("ASYNC_RESET")

601.) gtp_iserdes_inst3 (

602. .RST(1'b0),

603. .ICE@(1'b1),

604. .ICE1(1'b0),

605. .DESCLK (gmii_rx_clk),

606. .ICLK (gmii_rx_clk),

607. .ICLKDIV(gmii_rx_clk),

608. .DI (rgmii_rd[3]),

609. .BITSLIP(),

610. .ISHIFTINO(),

611. .ISHIFTIN1(),

612. .IFIFO_WADDR(),

613. .IFIFO_RADDR(),

614. .DO ({nc4,gmii_rxd_s[7],gmii_rxd_s[3]}),
615. .ISHIFTOUTO(),

616. .ISHIFTOUT1()

617.);

618. // -
619. wire [5:0] nc5;

620. GTP_ISERDES_E2 #

621. (

622. .ISERDES_MODE ("DDR1TO2_SAME_PIPELINED"),
623. .CASCADE_MODE ("MASTER"),

624. .BITSLIP_EN("FALSE"),

625.
626.
627.
628.
629.
630.
631.
632.
633.
634.

.GRS_EN ("TRUE
.NUM_ICE(1'b@)
.GRS_TYPE_Qo("
.GRS_TYPE_Q1("
.GRS_TYPE_Q2("
.GRS_TYPE_Q3("
.LRS_TYPE_Qo("
.LRS_TYPE_Q1("
.LRS_TYPE_Q2("
.LRS_TYPE_Q3("

")

RESET"),
RESET"),
RESET"),
RESET"),
ASYNC_RESET"),
ASYNC_RESET"),
ASYNC_RESET"),
ASYNC_RESET")

635.) gtp_iserdes_inst4 (

636. .RST(1'b0),

637. .ICE@(1'bl),

638. .ICE1(1'b0),

639. .DESCLK (gmii_rx_clk),
640. .ICLK (gmii_rx_clk),
641. .ICLKDIV(gmii_rx_clk),
642. .DI (rgmii_rx_ctl),
643. .BITSLIP(),

644. .ISHIFTINO(),

645. .ISHIFTINL(),

646. .IFIFO_WADDR(),

647. .IFIFO_RADDR(),

648. .DO ({nc5,rgmii_rx_ctl_s,gmii_rx_dv_s}),
649. .ISHIFTOUTO(),

650. .ISHIFTOUT1()

651.);

652. endmodule

BB A 1€ SC T AT S 5, BIERALE S reset. RGN Bl sys_clk.
GMIIL 1 RGMIT 22 F A OGAE 5, DASGHE FE A T AR U1 #8155 speed_selection
A1 duplex_mode. H:H', rgmii td. rgmii tx_ctl. rgmii_txc & RGMII &% 115
5, rgmii_rd.rgmii_rx_ctl.rgmii_rxc /& RGMII Ui 115 5 . gmii_txd.gmii_tx_en.
gmii_tx_er. gmii_tx_clk 7& GMIl KIA{55, gmii_rxd. gmii_rx_dv. gmii_rx_er.
gmii rx_clk & GMIL K15 2. led FI TRATER.

FERER N, 150 0E T — e S S A A A7 as, T B ATIRZAS & A7
[0 . gigabit 155 @i speed selection I FALHE, FKoasem b T FIREE.
gmii_tx_clk_s #HCN gmii_rx_clk, F T [FID R GEREUE 2.

fERIZEMA b, BB T GTP_OSERDES_E2 CHirth 82 - 488 Kg it
ATHI GMIT $5 4% RGMIT BT 75 () DDR (U B) B A7 8dl . N T s

L — i, RSS2k T 24 GTP_OSERDES E2 ffitk, H/AMEHLG 57— M
A B IE 5 R e

FARRAL, R I%E 505 8 % GMIT RS Hd Fn s il (5 5 AT A AP 2 B A7
DAV B A2 2GS AT E) 25) . gmii txd rv gmii tx_en r. gmii tx_er r T 774
AT RE B AR H15 5, gmii txd r d1. gmii tx_en r d1. gmii tx_er r d1 fi
TAEAEHT— N B A EE, XRE R LATE DDR &4 [RIR 3R A3 R T R
I

X5, Bk GTP_OSERDES E2 BBk, # 8 £i7) GMII ¥4 /) i 4
RLAUE 4 B2, 73 BRI B _ETHERTT BRI %4, T RGMIT T i 4 fi2 DDR
Hdli o &> GTP_OSERDES_E2 SEFIX N RGMII i — /s i sz {5 5, Ao
N “DDR2TO1_SAME _EDGE” iz, SEEILM A3 2 21 545 15 3 (1) e 46t

RS E L, BER{E R T GTP_ISERDES E2 (AN & 5 #88) k¥
RGMII (1] DDR AT E0 88 # 40 A AT GMI %85 . 51> GTP_ISERDES _E2 5C
Bl RGMIT 1) — e A 53z #il {5 5 , B B N“DDR1TO2_SAME_PIPELINED”
B, S B e B XA T AR R e 4 . BRI RGMIT 250408 76 I 1) | T
AR BRI B RAE, AN 4G R 8 A2 GMIT £ ¥s gmii rxd s.

AT PRIEERSCEEE R, ARRSIEAE A T PLL (BUHFR) Bk pll_sft
SIS B rgmii_rxe BEATHIAIRAL VRS, AT gmii_rx_clk, FHFOKBhERIEL
PEIRAE o IXAMLFERE A T FME RGMIT 2 11 Hh ko A0 50 22 18] (R HR A7 (i 7%

T ORATE T 1D I 20 R s

XS, always HH T1E gmii rx_clk (AP T, B REER) GMIT
FE IS E G AN 42) (5 5 5 3T B A7 2% gmii rxd. gmii rx_dv 1 gmii_rx_er H,
gmii_rx_er 1L gmii rx_dv_s il rgmii_rx_ctl s (FERER], FRBEREIRES

FEREI B gmii_tx_clk_s &, BHUE — RV FF A28 2 4R, 4l RGMII
1) K & E 5 rgmii_tx_ctl r A E 5 gmii_txd low . rgmii_tx_ctl r &2
gmii_tx_en_r Ml gmii_tx_er_r (580, TR K IEHEE 1A AEREE RIRAS .
gmii_txd low ¥ 41T A TAFE 2 gigabit, 7 T-IEBER FE gmii_txd r HIE 4 47,
FE BB IR N HUIC 4 £z

ARADIEAEEE T AT IE S gmii_col MEPALNE S gmii_crs, 75X T A

XN, WRIERIE RN E SRS A A R E S . R THEAT, XEES
WEN O,

N T PRI S S R, ARPUESEBIAE T —/> GTP_OSERDES_E2 ik,
F 724 RGMIT &I rgmii txe. A ZERT4P L DDR i, 7 RGMII
e O T RE RO B R AR S S .

YR A& — AW B0 LED AR5, H TR irmRE. &
gmii_tx_clk s BFEF N, — N iHEEs ent timer 21, HiA 3] — EENFH led 55,
S LED R J SR R o

BIRUL, X MR FPGA (1 33 5 2 e 25 AR AL R ROR, 5
L7 GMII A RGMII 42 2 8] (A5 58 e, W2 1T IR DK IGE(E 2K . B
PORS AR AL FE T AR AU AT B R AN M5 5 R AR, iR T
gl S . [, JE R AN TR AL S, BIEREENSIE NS A K AR
B, S DIOK EAE 1 sE B it T RiE k.

9.3.3gmii_arbi #EiH# R

gmii_arbi BEHREIEG LT

1. “timescale 1ns / 1ps

2.

3.

4.

5. module gmii_arbi

6. (

7. input clk,

8. input rst_n,

9. input [1:0] speed,

10. input link,

11. (* MARK_DEBUG="true" *)input gmii_rx_dv,
12. (* MARK_DEBUG="true" *)input [7:0] gmii_rxd,

13. (* MARK_DEBUG="true" *)input gmii_tx_en,

14.

I15).
16.
17.

18.

19.

20.
21.
22.
25,
24.
25).
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
0.
ol.
o2.
53.

(* MARK_DEBUG="
19 gmii K&
output reg [31:
output

(* MARK_DEBUG="
AR

(* MARK_DEBUG="
#

(* MARK_DEBUG="
st

(* MARK_DEBUG="
)

reg
wire
reg
reg
reg
reg
reg
reg
reg
reg

[1:0]
[1:0]
[1:0]

wire
wire [7:0]
wire
wire [7:0]
reg

reg [7:0]

assign e rst_n

always @(posedge clk or negedge rst_n)

begin
if (~rst_n)
begin
speed_do <=
speed_dl <=
speed_d2 <=
link_do <=
link d1 «=
link _d2 <=

true”

o]

true"

true”

true"

true”

= link_

2'boo ;
2'boo ;
2'boo ;
1'bo ;
1'bo ;
1'bo ;

*)input

[7:0]

pack total len,
e_rst_n,

*)output reg

*Youtput reg [7:0]

*)output reg

*Youtput reg [7:0]

eth_1000m_en
eth_10 100m_en
eth_100m_en
eth_10m_en
speed_do
speed_d1
speed_d2
link_do

link d1
link_d2

el0_100_tx_en
elo_100_txd
el10_100_rx_dv
el0_100_rxd

e_rst_en
e_rst_cnt

d2 & e _rst_en ;

gmii_txd,

//delay time 1s

// SN

e_rx_dv, // F# /5 #0K

e_rxd, // 11# a2 E

e_tx_en,// &/ k%

e_txd// 1f# 7 K &£

o4.
95.
6.
o7.
o8.
29.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
12.
73.
4.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
33.
94.
95.
96.
97.

end
else
begin
speed_d@ <= speed 5
speed_dl <= speed_do ;
speed_d2 <= speed _d1 ;
link_do <= link ;
link_d1 <= link _do ;
link_d2 <= link d1 ;
end
end

always @(posedge clk or negedge rst_n)
begin
if (~rst_n)
begin
eth_1000m_en <= 1'bo ;
eth_100m_en <= 1'b0 ;
eth_10m_en <= 1'b0 ;
pack_total len <= 32'd2500000 ;
end
else if (speed_d2 == 2'b10) //1006M
begin
eth_1000m_en <= 1'bl ;
eth_100m_en <= 1'b0 ;
eth_10m_en <= 1'b0 ;
pack_total len <= 32'd125000000 ; //1s
end
else if (speed _d2 == 2'bel) //106M
begin
eth_1000m_en <= 1'bo ;
eth_100m_en <= 1'bl ;
eth_10m_en <= 1'b0 ;
pack_total len <= 32'd25000000 ; //1s
end
else if (speed_d2 == 2'be0) //16M
begin
eth_1000m_en <= 1'b0 ;
eth_100m_en <= 1'b0 ;
eth_10m_en <= 1'b1l ;
pack_total len <= 32'd2500000 ; //1s
end

98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
1125,
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.

end

always @(posedge clk or negedge rst_n)

begin
if (~rst_n)
begin
e rx_dv <= 1'bo ;
e_rxd <= 8'do ;
e tx_en <= 1'b0 ;
e_txd <= 8'd0o ;
end
else if (eth_1e00m_en)
begin
e rx_dv <= gmii_rx_dv ;
e_rxd <= gmii_rxd ;
e_tx_en <= gmii_tx_en ;
e_txd <= gmii_txd g
end

else if (eth_10@0m_en | eth_1@m_en)
begin
e rx_dv <= el@_100 rx_dv ;

e_rxd <= el10_100_rxd 5
e_tx_en <= el10_100_tx_en ;
e_txd <= el0_100_txd 5
end
end

always @(posedge clk or negedge rst_n)
begin
if (~rst_n)
e rst_en <= 1'bl ;
else if (speed _d2 != speed_dl)
e rst_en <= 1'b0 ;
else if (e_rst _cnt =
e rst_en <= 1'bl ;

= 8'd200)

end

always @(posedge clk or negedge rst_n)
begin
if (~rst_n)
e rst_cnt <= 8'dO ;

142. else if (~e_rst_en)

143. e_rst_cnt <= e_rst_cnt + 1'b1 ;
144. else

145. e_rst_cnt <= 8'do ;

146. end

147.

148. assign eth_10_100m_en = eth_100m_en | eth_1@m_en ;
149.
150. gmii_tx_buffer tx_buffer_inst

151. (

152. .clk (clk)
153. .rst_n (e_rst_n)
154. .eth_10 _100m_en (eth_1@_100m_en)
155. .link (e_rst_n)
156. .gmii_tx_en (gmii_tx_en)
157. .gmii_txd (gmii_txd)
158. .el10 100 tx_en (ele_100 tx_en)
159. .el@ 100 txd (e10_100 txd)
160.);

161.

162.

163. gmii_rx_buffer rx_buffer_inst

164. (

165. .clk (clk),
166. .rst_n (e_rst_n)
167. .link (e_rst_n)
168. .eth_100m_en (eth_100m_en)
169. .eth_10m_en (eth_1em_en)
170. .gmii_rx_dv (gmii_rx_dv)
171. .gmii_rxd (gmii_rxd)
172. .ele_ 100 rx_dv (ele_100 rx_dv)
173. .el0 100 rxd (ele_100 rxd)
174.

175.);

176.

177. endmodule
BRI A R G B clk. BALE S rst_n. PURMEZILEFE(F 5 speed
(PAZ, 00 7R~ 10Mbps, 01 F7~ 100Mbps, 10 %7~ 1000Mbps) , HEMCIRAE
5 link, AN GMII £ 1 AGE M E S gmii_tx_en. gmii_txd. gmii_rx_dv.
gmii_rxd. BB FE—> 32 211 pack_total len, FH THE/~" BB EKE, e st n
55, X MAC JZ ALz, PLE AT S AR RIS 5 e_tx_en.e_txd.

e_rx_dv. e_rxd, ft MAC EfEH.

TERSHLAES, 15X speed F link 15 5 AT Z R a2 FL, Bk TES
(1) 5 0 A S B AR). 3@ IS A7 A7 4% speed_dO. speed_dl. speed_d2 F
link dO. link d1. link d2, ¥ speed Al link 155 [F]20 | K Geit g .

BEROR, RAEFD G HEE (55 speed d2, i€ 4Rl AI LK PR ERB . 25
speed _d2 4 2'b10, F/RALT 1000Mbps (TJK) #zl, ¥ E eth 1000m en NE
HL°F, eth_100m_en 1 eth 10m_en A& B °F, [A B K pack total len ¥ N
32'd125000000, T 58T siEHR K B . 47 speed _d2 24 2'b01, Fonit
T 100Mbps t3X, & & eth 100m_en My H -, HAB K, pack total len
WA 32'd25000000. 45 speed_d2 A 2'b00, K AT 10Mbps #E5X, % & eth 10m_en
NEHT, HACAK S, pack total len 4 32'd2500000.

FEHOLE I e rst_en Fl e_rst_cnt SEIUM MAC JZ R A6 HEEES
speed_d2 KAEZLALF, e rst_en # B NCHT, 46X MAC JZ#ETE A7 .e_rst_cnt
FFEE T, 180 2 8'd200 B, e rst_en HHTE NE T, SR B IS FE.e st n
55 H link d2 Fll e_rst_en (B4 5195, G L5 ERE B R4 HRES, e rst n
NEHSE, MAC EABRIES T1E.

TERIRES T, 24 eth_1000m_en AT, BIALFTIRBE AR, FibE
Pk GMIT 4 O H) R IXE S S gmii tx_en. gmii txd. gmii rx_dv. gmii rxd
£ MAC JZ2/32 0 ¢ tx_en.e txd.e rx_dv.e rxd.44tT 100Mbps B 10Mbps
550, HY eth 100m_en B eth 10m_en i HLFH, 08 7 4 MR IE B R
BEATAb . BEERSZIE T gmii tx buffer f1 gmii rx_buffer, FT7ERREZR X}
IR IE AN AT G2 A7 AR R IU T o

gmii_tx_buffer B 71 57 7E 10Mbps Al 100Mbps T, b & IEHIE 4T &
M. EARIER RIS AE S, DARCEEER, 2247k H GMI #: H ¥R 2 40k
gmii_tx_en 1 gmii_txd, JFF4iH &R S 2R €10_100_tx_en 1 e10_100_txd.
gmii_rx_buffer #53 N] £1 534U 77 o) AR R FROE G, A0 PR GMIL 4% H 4 W0 84
gmii_rx_dv Ml gmii_rxd, &R)E K##E e10_100_rx_dv A1 e10_100_rxd.

Ak, RGBS S eth 10 100m_en (H eth 100m_en 1 eth_10m_en [#)5§
BEAAED KGR ML AT 10Mbps 3k 100Mbps B3, -2 il 50808 1 i

R, EXFET, S I AR A UUE 5 N S IE BRI, 1 0 B
M GMII % [3RHL

W FREH, gmii_arbi BEHSTIL T AN [3 28 LUK X EE 3R AT A A
&R, MRRIESFERE T, MAC 2SR IR A& A . BORR R E
FEERCIRAS A A BEIR AT, JFEB AR X MAC BT B AL, TRERS
e e MR AT S

IXAMEHO T DK I8 SRR B2, B R AR AN R s, R
ity ML R R A A 2, R DRSO 1) SE B AN k. R, e A AE S
P, BEBRBENS AR SRR AL, RN MAC BT E AL, B IEAHR B
(R o IXMERFIE A4S gmii_arbi BEERTE UK RT3 17 ORI M s, A b
JE1) MAC JZ44t T A8 rT S m s s M .

I

e

9.3.4mac_test BRI AR

mac_test BLHIJFEAG U «
1.
L1717 7717777717
[171171177117711717717
//Module Name : mac_top
//Description :
//

L1117 7107707777777 7 777777777777 777777777777777777717717117177
[1117117717711771171177

// define TEST_SPEED

Rl 5 Bl N°

=

7. “ltimescale |1 ns/|1| ns

8. module mac_test

9. (

10. input rst_n ,

11. input [31:0] pack_total_len,

12. input gmii_tx_clk ,

13. input gmii_rx_clk ,

14. input gmii_rx_dv,

15. input [7:0] gmii_rxd,

16. output reg gmii_tx_en,

17. output reg [7:0] gmii_txd,

18. output reg [15:0] udp_send_data_length,

19. output write_sel,

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
S
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
0.
ol.
52.
93.
o4.
o5.
6.
o7.
8.
99.
60.
61.
62.
63.

output
output al full,
output emp_sum,
output checksum wr,

output [4:0] use_

output [7:90]
output [10:0]
output [15:0]
)

localparam UDP_WIDTH
localparam UDP_DEPTH

reg
reg [7:0]
wire

wire [7:0]

reg [7:0]
reg
wire
reg [15:0]

wire [7:0]
wire
wire
wire
wire
reg

wire [7:0]
reg [10:0]
wire [15:0]
wire

wire
wire

reg

reg

wire

reg [31:0]

reg [UDP_WIDTH-1:0]

udp_rec_data_valid,

rd,
udp_rec_ram_rdata ,
udp_rec_ram_read_addr ,
udp_rec_data_length

= 32 ;
=5;

gmii_rx_dv_de ;
gmii_rxd_de ;
gmii_tx_en_tmp ;
gmii_txd_tmp ;

ram_wr_data ;
ram_wr_en ;
udp_ram_data_req ;
udp_send_data_length ;

tx_ram_wr_data ;
tx_ram_wr_en ;
udp_tx_req ;
arp_request_req ;
mac_send_end ;
write_end ;

udp_rec_ram_rdata ;
udp_rec_ram_read_addr ;
udp_rec_data_length ;
udp_rec_data_valid ;

udp_tx_end ;
almost_full ;

udp_ram_wr_en ;
udp_write_end ;
write_ram_end ;
wait_cnt ;

udp_data [UDP_DEPTH-1:0];

64.

65. reg [4:0] i;

66. reg [1:0] j ;

67.

68. reg write_sel ;

69.

70. wire button_negedge ;
71.

72. wire mac_not_exist ;
73. wire arp_found ;

74.

75. parameter IDLE = 9'boo0_0ee ool ;
76. parameter ARP_REQ = 9'booe 000 010 ;|
77. parameter ARP_SEND = 9'b000_000_100 ;
78. parameter ARP_WAIT = 9'bood 001 000 ;|
79. parameter GEN_REQ = 9'b000_010 000 ;
80. parameter WRITE_RAM = 9'booe_100 000 ;|
81. parameter SEND = 9'bo01_000 000 ;
82. parameter WAIT = 9'b010_000 000 ;|
83. parameter CHECK_ARP = 9'b100_000_000 ;
84.

85.

86. reg [8:0] state ;

87. reg [8:0] next_state ;

88. reg [15:0] ram_cnt ;

89. reg almost_full do ;

90. reg almost_full di ;

91. always @(posedge gmii_tx_clk or negedge rst_n)

92. begin

93. if (~rst_n)

94. state <= IDLE ;
95. else

96. state <= next_state ;
97. end

98.

99. always @(*)

100. begin

101. case(state)

102. IDLE

103. begin

104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122,
123.
124.
125.
126.
127.
128.
129.
130.
131.
11352,
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.

if (wait_cnt == pack_total len)
next_state <= ARP_REQ ;
else
next_state <= IDLE ;
end

ARP_REQ
next_state <= ARP_SEND ;
ARP_SEND
begin
if (mac_send_end)
next_state <= ARP_WAIT ;
else
next_state <= ARP_SEND ;
end
ARP_WAIT
begin
if (arp_found)
next_state <= WAIT ;

//1s

else if (wait_cnt == pack_total_len)

next_state <= ARP_REQ ;
else
next_state <= ARP_WAIT ;
end
GEN_REQ
begin
if (udp_ram_data_req)
next_state <= WRITE_RAM ;
else
next_state <= GEN_REQ ;
end
WRITE_RAM
begin
“ifdef TEST_SPEED

if (ram_cnt == udp_send data length - 1)

“else
if (write_ram_end)
“endif
next_state <= WAIT g
else
next_state <= WRITE_RAM ;
end

SEND

//frame gapl

//1s

(write_sel)? udp_write_end : write

148. begin
149. if (udp_tx_end)
150. next_state <= WAIT ;
151. else
152. next_state <= SEND ;
153. end
154.
155. WAIT
156. begin
157. “ifdef TEST_SPEED
158. if (wait_cnt == 32'd90)
159. “else
160. if (wait_cnt == pack_total len)
161. " |endif]
162. next_state <= CHECK_ARP ;
163. else
164. next_state <= WAIT ;
165. end
166. CHECK_ARP
167. begin
168. if (mac_not_exist)
169. next_state <= ARP_REQ ;
170. else if (almost_full di)
171. next_state <= CHECK_ARP ;
172. else
173. next_state <= GEN_REQ ;
174. end
175. default
176. next_state <= IDLE ;
177. endcase
178. end
179.
180.
181. assign write_ram_end =
_end ;

182. assign tx_ram_wr_data
am_wr_data ;

183. assign tx_ram_wr_en
r_en ;

184.

185.

186. always@(posedge gmii_rx_clk

(write sel)? udp_rec_ram_rdata : r

(write_sel)? udp_ram_wr_en : ram_w

or negedge rst_n)

187.
188.
189.

190.

191.
192.
193.
194.
195.
196.
197.
198.
199.

begin

if(rst_n == 1'b0)

begin

gmii_rx_dv_de <= 1'|bo ;

gmii_rxd_de
end
else
begin

<= 8'do ;

gmii_rx_dv_d@ <= gmii_rx_dv ;

gmii_rxd_de
end
end

<= gmii_rxd ;

200. always@(posedge gmii_tx _clk or negedge rst_n)

201.
202.

203.
204.

200.

206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.

//source mac address

20

223.
224.

begin

if(rst_n == 1'b0)

begin
gmii_tx_en

gmii_txd

end
else
begin
gmii_tx_en
gmii_txd
end
end

mac_top mac_topo

(

.gmii_tx_clk
.gmii_rx_clk
.rst_n

.source_mac_addr

LTTL

.source_ip_addr

.destination_ip_ ad

<= 1'b0 ;

<= gmii_tx_en_tmp ;
<= gmii_txd_tmp ;

(gmii_tx_clk)
(gmii_rx_clk)
(rst_n) ,

(48'hoo_0a_35 01 fe_c0)

(8'hse). |

(32'hc0ase0e2),

dr (32'|hcPase0e3),

J

225.
226.

2217.
228.
229.
230.
231.
22,
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
2512,
253.
254.
255.
256.
257.
258.
299.
260.
261.
262.
263.
264.
265.
266.
267.

.udp_send_source_port

.udp_send_destination_port

.ram_wr_data
.ram_wr_en
.udp_ram_data_req
.udp_send_data_length
.udp_tx_end
.almost_full

.udp_tx_req
.arp_request_req

.mac_send_end
.mac_data_valid
.mac_tx_data
.rx_dv
.mac_rx_datain

.udp_rec_ram_rdata
.udp_rec_ram_read_addr
.udp_rec_data_length

.udp_rec_data_valid
.arp_found
.mac_not_exist
.al_full (al full),
.emp_sum (emp_sum),
.checksum_wr(checksum_wr),

.use_rd (use_rd)

)

always @(*)

begin
udp_data[9]
udp_data[1]

-

))

udp_data[3]
udp_data[4]

end

1] "E"_,"

H X >

<={"H

<={"0
udp_data[2] <={"I","N","

<={"H

<={"I

(16'h1f90),

(s]

(tx_ram_wr_data) ,
(tx_ram_wr_en),
(udp_ram_data_req),
(udp_send_data_length),
(udp_tx_end
(almost_full

(udp_tx_req),
(arp_request_req),

(mac_send_end),
(gmii_tx_en_tmp),
(gmii_txd_tmp),
(gmii_rx_dv_de),
(gmii_rxd_de),

(udp_rec_ram_rdata),
(udp_rec_ram_read_addr),
(udp_rec_data_length),

(udp_rec_data_valid),
(arp_found),
(mac_not_exist),

L
"L
PRSY

"’"J"};

)s
)s

268.
. //reg almost_full do ;
. //reg almost_full di ;
271.

269
270

201 %,
273.
274.
275.

276.

271.
278.
279.
280.
281.
282.
283.
284.

begin
if(rst_n == 1'b
begin

end
else
begin

end
end

285.

286.
2817.

288.

289.
290.
291.
28V
293.

294.

299.
296.
297.

298.

299.

begin

else
“ifdef TEST_SPEED

“else

[omesA

end

300.
301.

302.
303.
304.

305.
306.

begin

else if (state

0)

almost_full de

almost_full di

almost_full de
almost_full di

if(rst_n == 1'b0)

if(rst_n == 1'b0)

write_sel <=1 '

always@(posedge gmii_ rx_clk

always@(posedge gmii_ rx_clk

WAIT)

or negedge rst_n)

almost_full ;
almost_full do ;

or negedge rst_n)

udp_send_data_length <= 16'do ;
else if (write_sel)
udp_send_data_length <= udp_rec_data_length - 8

udp_send_data_length <= 16'|d1000 ;

udp_send_data_length <= 4*UDP_DEPTH ;
//udp_send_data_length <=16'd20 ;

always@(posedge gmii_tx_clk or negedge rst_n)

3

307. begin

308. if (udp_rec_data_valid)

309. write_sel <= 1'bl ;

310. else

311. write_sel <= 1'

312. end

313. end

314.

315. assign udp_tx_req = (state == GEN_REQ) ;

316. assign arp_request_req = (state == ARP_REQ) ;

317.

318. always@(posedge gmii_tx_clk or negedge rst_n)

319. begin

320. if(rst_n == 1'b0)

321. wait_cnt <= 0 ;

322. else if ((state==IDLE||state == WAIT || state == ARP_WAIT) &
& state != next_state)

323. wait_cnt <= 0 ;

324. else if (state==IDLE||state == WAIT || state == ARP_WAIT)

325. wait_cnt <= wait_cnt + 1'|b1 ;

326. else

327. wait_cnt <= 0 ;

328. end

329.

330.

331. “ifdef TEST_SPEED

333. //Test ethernet speed

334. //reg [15:0] ram_cnt ;

335. always@(posedge gmii_tx_clk or negedge rst_n)
336. begin

337. if(rst_n == 1'b0)

338. ram_cnt <= 11'de ;

339. else if (state == WRITE_RAM)

340. ram_cnt <= ram_cnt + 1'b1 ;

341. else

342. ram_cnt <= 11'de ;

343. end

344.

345. always@(posedge gmii_tx_clk or negedge rst_n)
346. begin

347. if(rst_n == 1'b0)

348.
349.
350.
351.
352.
353.
354.
350.
356.
3957.
358.
359.
360.
361.
362.
363.
364.
360.
366.
367.
368.
369.
370.

371.

372.
373.
374.
375.
376.
377.
378.
379.
380.
381.

382.

383.
384.
385.
386.

38T7.
388.

ram_wr_en <= 1'b0 ;
else if (state == WRITE_RAM)
ram_wr_en <= 1'bl ;
else
ram_wr_en <= 1'b0 ;
end

always@(posedge gmii_tx_clk or negedge rst_n)
begin
if(rst_n == 1'b0)
ram_wr_data <= 8'do ;
else if (state == WRITE_RAM)
ram_wr_data <= ram_cnt[7:0] ;
else
ram_wr_data <= 8'do ;

end
/***/

“else
always@(posedge gmii_ tx_clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
write_end <= 1'
ram_wr_data <= 0;
ram_wr_en <= 0 ;
i<=20;
j<=20;
end
else if (state == WRITE_RAM)
begin
if(i == 5)
begin

ram_wr_en <=1'b0;
write_end <= 1'|bl;

end
else
begin
ram_wr_en <= 1'bl ;

write_end <= 1'/b0O ;

j <=3 +1'p1;

389. case(J)

390. 2'|do : ram_wr_data <= udp_data[i][|31D24
391. 2'd1 : ram_wr_data <= udp_data[i][23:16] ;
392. 2'|d2 : ram_wr_data <= udp_data[i]ﬂlS[]Sh ;]
393. 2'd3 : ram_wr_data <= udp_data[i][7:0] ;
394. default : ram_wr_data <= 8‘

395. endcase

396.

397. if (§ == 3)

398. begin

399. j<=0;

400. i<=1i+ 1'b1;

401. end

402. end

403. end

404. else

405. begin

406. write_end <= 1'

407. ram_wr_data <= 0;

408. ram_wr_en <= 0 ;

409. i<=0 ;

410. j <=0 ;

411. end

412. end

413. “endif

414.

415. //send udp received data to udp tx ram
416. always@(posedge gmii_tx_clk or negedge rst_n)

417. begin

418. if(rst_n == 1'bo)

419. udp_rec_ram_read_addr <= 11'de ;

420. else if (state == WRITE_RAM)

421. udp_rec_ram_read_addr <= udp_rec_ram_read_addr + 1'bl ;
422. else

423. udp_rec_ram_read_addr <= 11'de ;

424. end

425.

426. always@(posedge gmii_tx_clk or negedge rst_n)
427. begin

428. if(rst_n == 1'bo)

429. udp_ram_wr_en <= 1'bo ;

430. else if (state == WRITE_RAM && udp_rec_ram_read_addr < udp_r
ec_data_length - 8)

431. udp_ram_wr_en <= 1'bl ;

432. else

433. udp_ram_wr_en <= 1'bo ;

434. end

435.

436. always@(posedge gmii_tx_clk or negedge rst_n)

437. begin

438. if(rst_n == 1'b0)

439. udp_write_end <= 1'bo ;

440. else if (state == WRITE_RAM && udp_rec_ram_read_addr == udp_
rec_data_length - 8)

441. udp_write_end <= 1'bl ;

442. else

443. udp_write_end <= 1'bo ;

444, end

445.

446.

447. endmodule

448.

449.

G, BRI IR H 1 E T S GMIL E DR HAE S, DL —ieA
TEHIFBIRERNE T A

rst_n: BAES, KETHER

pack_total_len: FH T S R5 N [A) B B0HE A K2 11 32 A5 5.

gmii_tx_clk Al gmii_rx_clk: GMII 2 1 F A IE RIS 815 5

gmii_rx_dv Fl gmii_rxd: GMII # [R ISCEOE A 28015 5 AR ISR S 28

B HH ity 1B

gmii_tx_en Fl gmii_txd: GMII £ [R E 48 GBS 5 A R BRI B 2k .

udp send data_length: UDP K& EMIKE.

write_sel: 5 NIEHES, HTEBEHIRIE.

udp _rec data valid: UDP #UEHEE 2S5 -

HAAZ 540 al_full. emp sum. checksum wr. use rd. udp rec ram rdata.
udp_rec_ram read addr. udp rec data length, T W EBEHEALFEFVIRSTE R

PP R S ST — R SR S HOR B A7 A, 4 UDP B 1) 56 B AR B

M T AR ROE I BHE AR . BT R, & T — e T4l B A7 A2 | 1) 35 A7 4% »
Ul gmii_rx_dv_dO. gmii rxd dO. ram wr data. ram wr en %%,

B i S A — A mac_top THEER, SERL MAC Z) EZThAE. mac_top
B DA HE ARP 153K UDP %4 (R XA, AKX S GMII £ H i BARAE
H.

B, 8 ST RSN, TSR ORI R AR . RS
(& AR ELFE:

IDLE: ZERARAS, FfriHI 2818 2 K pack_total len, #AJ5#EA ARP iF

ARP_REQ: Ki% ARP iFRIPIRA, fil)k ARP 3EKHIKIL,

ARP_SEND: ARP iFRKEH, S RIETHIGH A ARP SR

ARP_WAIT: “5fF ARP Wi, 40 FAESEAFIN [A]] USC3 ARP M 82, Uk N\ 55
FPIRAS, B EHIR 1% ARP 1K,

GEN_REQ: ‘£l UDP KIiXTERHPIRA, Z54r UDP BEHAE 2% 1 St 14 i

WRITE_RAM: #ZRIEFEHE S N RAM FPIRZ, ARIEA [F 1,
A RE A A A BOR IX R B 1K) UDP #4

SEND: ¥ KIIRA, 2545 UDP #dis Kk 58 il

WAIT: KIETERG IS RPRES, S — BN A Ja K & ARP 3.

CHECK_ARP: fi#t ARP EH & EAFAE H bR MAC Mk, G1RAEAE, NEH
W% ARP IER .

FEMRESHLRHE SN, B TE B T Bl i R R RO . Bk, fEEARE
N, BRI SRR VOEE, ARG RIE ARP 1K, 2 GERICE FR 1P kb
I MAC Hiiko 7ERCDIZREL MAC bk 5, BERAE R UDP Kixigsk, ¥HERES
NRIEGAF o WRAE TR, B A sl B e il . an A Hl2im
UDP ¥ 75 248 K, B3I B R8s 5 N K IRZEAT .

FEHSRE NG, RN SGRIRES, 547 UDP Bl Ak e il Kk
AG, BENGERPIRAS, S — B JE kS ARP %, PUEfifR H AR MAC Hb
HEVIRAE R R B bR MAC b2k 2%, B EH TR I% ARP K.

B IE AL FE T GMIT 48 111 32 A WSS 5 10) 20 R 8 A7 o JE o it

gmii rx_dv. gmii rxd. gmii tx_en. gmii txd {5 5 AT FERFL, FEEUEAE
A T B sl 2]) T A A B

£ UDP 48 A B 75T, #iE LT —A> UDP #4544 udp_data, F T1#6if
FHRGR M REAE . SRR, B AR BRI UDP Bl K, 3)
AU RE AR K udp_send data length.

PEHLA B S — S #1155, W udp tx_req. arp request req, 5 mac top ¥
BTSSR ARP SRR UDP 35 K 3%

THIN &% wait_ent F TAEANRPRES Z (B ZEAT IS TR 4], Qe S RS T 2645 —
SEIS [P IE ARP 3K, 7EEERRIRE T 45— E I I FF A & ARP 3.

FEHOE & LT — L W 454, 0 ifdefTEST SPEED, H T2l abRi =,
THAT A EMHE LR, o 4 mlok & I8 F T %, DA DIOK I) 4%
B

FERZHARNT, BPARIE URTRRES, BHEUE S N REEANRE. £
WRITE RAM RZ& T, B R4 H 8 1T 2028 ram_cnt, B3R5 N R ERAT
ram_wr_data, JF{EHIEERE(S 5 ram_wr_en.

T HUE K UDP i, BUHRAERR SRR, 2Bl MBI 2 A7
BNKIEGAT, UASEILEE 00 R IhRg .

SRR, XA mac_test BEHGEIDIRAHURAE S, SEIL T BRI MAC =1
ARP iE3K . UDP ##E iR B ML, B miLs, AS GMIL # M H5E
o BB S T AR ORI AR IR ok, B — e R
YRR Rk

9.3.5power_on_rst 2R

power_on_rst BIHLYEAL U1

“timescale 1ns / 1ps

module power_on_rst
#(
parameter CLK_FRE = 50,
parameter DELAY_MS 50

)
(

el 5 B2l O Ll €0 9 =

9. input clk,

10. input rst_n,

11.

12. output power_on_rstn
13.)

14.

15. reg [31:0] rst_cnt ;
16. localparam RESET_DELAY = CLK_FRE*1000*DELAY_MS ;

17.

18. always @(posedge clk or negedge rst_n)
19. begin

20. if (!rst_n)

21. rst_cnt <= 32'do ;

22. else if (rst_cnt < RESET_DELAY)
23. rst_cnt <= rst_cnt + 1'b1 ;
24. else

25. rst_cnt <= rst_cnt ;

26. end

217.

28. assign power_on_rstn = (rst_cnt < RESET_DELAY)? 1'b@ : 1'bl ;
29.
30. endmodule

YR SR, B RIETE, BefIE RS [R P A IE i 75 5K
240 CLK_FRE R £ 4%, BRMMESN SOMHz, RPFAR8h clk FISZ . S50
DELAY_ MS E/RIER I 8], BRIME N 50 =20, BIEA(E S ORFHIK T R RpEE)
] RIS, AT RGHR R BB AR Z AN

RN, & LT —A> 32 MrZF A7 a4 rst_ent YENTHECES, FH T 1H250mt
JAAE . AR, AR E 55 RESET _DELAY, IR 7 4E i (1) s i 4
W%, it 5 5 X~ RESET _DELAY=CLK FRE*1000*DELAY MS. X H,
CLK_FRE UL MHz JNEi47, DELAY MS PAZEFP NEAL, 3RLL 1000 &4 Z b
BONAD, PR DL BT, 45 2SR 18

THEER I TARNLS R AR o ETHE, RABEAME S st KRS, hE
THEER AT N . 2 rst_n AMRHSPIR, FRORIMEEEALBOE, TS rst_cnt #EIEE .
4 rst_n N HLF H rst_cent /NF RESET _DELAY I, -8 88 76 4 s b JE 3033 4
1o it 888 3 akiid RESET DELAY I, TH8 88 R EF L a2, ANHEifh.

fn 4 1) 52 AL 15 5 power_on_rstn AR 4 T AL A8 B B E o 24 rst_ent /N T
RESET_DELAY i, power_on_rstn NIKHLT, R RGN T EADIRA - 24 rst_cent

ik % a#it RESET DELAY B, power on rstn 28 A LT, RoREMEHR, R
SR IE R 84T JRIx A7, Bl T7E Lk G A S, N — AR E
I [) P RE TR A A5 5 R D e

XA~ power_on_rst BEER X T 75 BRI 5 S AF A IR B AR E 1 RGAEHE
AR, AT DL G R LR R S BN S AR E BN RS R EAT A EIE S E K
T, AT DR I IE RS R 1) R G K, i OR R G AE A& I HLE N TARIRAS
PETHEEAR I AT R

9.5 SKIIMKR

FH I 263754 PT2T70H JF & Hi ¥ A1 PC 3t 1 5

VEE W (PCuE) TP #hlkA 192. 168. 0.3, FFAEM I 1P Huklky
192. 168. 0. 2;

B A PRRRT, WA arp —a, AJPAEF| IP: 192.168.0.2, MAC:
00 _0Oa_35 01 fe c0; FFHPEN ping 3o UF B EE M & 15 1 5 # DL A B %

10.PCIE @& sc1& FlFE

10.1 SCBRY
SEML PCIE 5.

10.2 SCIS[RIE

PG2L100H £ N B T 2R R 534 6. 6Gbps /&y B AT H LA, B HSSTLP.
PG2L100H JF &R HEfE—4> PCTe x4 %11, PCIE EHIAMER P& briE PCle
HAIRTEEESR, Al HREAEME PC 1) x4 PCle Ak FAdH .

10.2.1 PCIE &4ty

PCIE TP 74 PCI Express® Base Specification Revision 2. 1[8] S FH
PHY Interface for the PCI ExpressTM Architecture Version 2.00[12] (#%

PEIEBY A 32 bits) L.

ThEeke it

o 5 B

Y FFECE Device Type

PCI Express Endpoint

Legacy PCI Express Endpoint

Root Port of PCI Express Root Complex

x1

Y HFECE Max Link Width x2
x4
2.5GT/s
= Max Link
YL E Max Link Speed 56T/
Y FF Max Link Width & & A
x1 A% LPLL
Y 100MHz Reference Clk —
FHF Upconfigure Capable -
1
T #¢ AXI-Stream Slave MHE#E | 2
3

X ¥F Debug 4% 11

W HRIE T Apb B AL E PCTe

Configuration Space

¥ FF Receive Queue
Management

% ¥ Lane Reversal

S #F Force No Scrambling

Y FrBcE Vendor 1D

Y FFBCE Device ID

FFFBCE Revision 1D

PCI Express Endpoint. Legacy PCI Express

SCHFHCE D Endpoint S #fAc & Subsystem Vendor ID
PCI Express Endpoint. Legacy PCI Express
Endpoint S HFACE Subsystem ID
Y FFACE Classcode
PCI Express Endpoint. Legacy PCI Express
Endpoint SCHFACE 6 > BAR
Root Port of PCI Express Root Complex {X 3¢
FFHc B BARO. BAR1
PCI Express Endpoint S #FfiC & N Memory BAR
Legacy PCI Express Endpoint<Root Port of PCI
Express Root Complex A E N Memory. 10
BAR

Y F; BAR iLE % FF 32bit BAR

32bit BAR S FHCE K/N N 256 Byte —2G Byte

BARO. BAR2. BAR4 ZFF 64bit BAR

64bit BAR % #F Prefetchable

64bit BAR SCHFECE K/NA 256 Byte —8E Byte

Y HF Expansion ROM BAR

Expansion ROM BAR SZ#FMC & K/NA 2K Byte
—-16M Byte

T HFC E Max Payload Size

128 Byte

256 Byte

512 Byte

1024 Byte

Y FrAc B Extended Tag Field
5 Extended Tag Default

Y FF Atomic FH5

RC B > % % B Read

Completion Boundary

Y AL E Target Link Speed

RC I} X #Fi% B CRS Software
Visibility

¥ FF & B ECRC Generation
Capable

ERIA{# BE ECRC Check Capable

SCHFINIT HR i

PCI Express Endpoint. Legacy PCI Express
Endpoint W37 $r INTA

Root Port of PCI Express Root Complex 3 #F
INTA. INTB. INTC. INTD

Y 64-bit Address MSI Hrir

T Multiple Message Capable: 1. 2. 4. 8.

SCRFMST e 16+ 32 4~ Vectors

S #F Per Vector Masking Capable

YRS Tx P YL E Table Size . Offset 5 BIR

L E PBA Offset 5 BIR

e -7 R EIZIULH

10.3 T#21%AH

10.3.1 &% PCIE IP %

PDS %% J5, FHFshdsin PCIE 1P, iE% LN DI 5E:
PCIE IP Xf4f: 6 IP setup packet\ips2tl pcie gen2 vl Oc.iar

» 6_IP_setup_packet » PCIE

S

133

| | ips2t_pcie_gen2_v1_O.iar

IP ZHDH: WEE LRMMR\03_TP ek 5aFE M 1M

t » 1_Demo_document » TEFHEE

-~

£5%
i £ 01_PDSE=EES M pdf
2 3 02_PDStEEREMR pdf

B o3 ipzg SEERF SR pdf
E 04 PDSSmodelsimBE&{5E.pdf
* 4 05 FPGARCPLDEI FESEIL v1.1.pdf

10.3.2 PCIE £Ei&H 178

FTIT PDS #cAtk, #rid TH% peie test, AJF NEFR, FTIF IP Compiler;

File Edit View Project Process Tools Window Help

O = . | a | - g2 M E® GO B8 &

s R
K K

| B b @ | 4 3 B

_] J Find:
- {i] PG2T70H-6FBB4B4 & 10 Summary
E. =) Designs (1) 10 Report Project Name: pcie
| - Pinout Report i .
POE Project Version: W
| Resource Usage Summary
-~ [Ef Constraints B Compile Part: PG2TT0H-6FBB454
L 5 3 i Sttt
= simmlation SR Top Module:
Design Files Read
Runtime & Memory Design Target: Place:normal;Route:normal
Project Pathname C:\pcie\ipcore\pcie\pcie.idf | Browse HPrnj Pat
hs]
Instance Ni ®I|5@015tomize| |
=1 Module
£] Memory T
& [pistributed RAM Hame! | |ECI Expreas
i ok Distributed FIFO (1.§)
~4iF Distributed ROM (1.4) Um0
ﬂk Distributed Shift Register Vendor @ Shenzhen Pango Microsystems Co., Lt
~{uf Distributed Simple Dual Por)
. fi} Distributed Single Port R | information Datasheet
=- (3 o4 .~ Part (BDS settings)
inf DRM Based Dual Port RAM (1.
-4 DRM Based FIFO {1.12) Family Titan2 hd
inF DRM Based ROM (1.9) .
Device PG2T70H W
~uk DRM Based Simple Dual Port
of DRM Based Single Port REM (: | Package FBB484 v
=+ (] Multiplier
i-quF Accumulator (1.5) Speed Grade -6 o
~4uF Multiply-Accumulator (1.5)
~dmf Multiply-Adder (1.5)
“duk Simple Multiplier (1.5)
E- @ pLn . :
0 Configuration
ik PLL (1.6)
= E sysr.em Qutput =]
i Initializing ...
; e Compiling architecture definition.
EH (&I Toors Loaded 29 devices.
£+ (1 pebug Loaded 101 IPs. (10)
= {fiE DebuaCore. f1-31 Imported 1 IP instance.

PEF PCIE 1P, HU %, 4RJ5 i Customize;

£ PCIE W& S : RIBEITFRKRICE lane £, PlIL#E X2, MESHM B,
2% T

@ PCI EXpress 1.0 Titan2-PG2I70H-FBB484—-6

— PCIe Basic Settings

Device Type PCI Express Endpoint
Maximum Link Width |X2 Maximum Link Speed 5 GIfs
PLL Scurce from \ Reference Clk 100 MH=z

Number of AXI-Stream Slave 3

\/ Cplg Managment Enable

\/ Upconfigure Capable

|~/ Enable Lane Reversal

Disable Scrambling
\/ Dynamic Configuration for PCIe
Enable Receive Queue Management
\/ Enable Debug Ports
\/ Enable Configuration Out Ports

Enable Credit Ports

VT RS, FE/A)i% F Enable Lane Reversal, 750N|<=5%(PCIE 5246
ML

(@ customize IP - PCI Express (1.0), Instance pcie_test
s o 8 @5
Configure EEvFS-5id

Symbol & x
IR L

@ PCI EXpress 1.0 Titan2-PG2I70H-FBB484—-6

~ PCIe Basic Settings

Device Type ECI Express Endpoint
Maximum Link Width K2 Maximum Link Speed 5 GI/s
ELL Source from Reference Clk 100 Miz

Number of AXI-Stream Slave 3

/| Cplq Managment Enable

/| Upconfigure Capable

IES & SRS P TS

/| Enable Lane Reversal

Disable Scrambling

/| Dynamic Configuration for BCIe
Enable Receive Queue Management

/| Enable Debug Ports

&/ Enable Configuration Out Ports

Enable Credit Ports

[ECIe ID Settings

Vendor ID 0755 Range "h0-FFFF
Device ID 0755 Range "h0-FFFF
ELTE LA AL Reviaion T n P——

Footh ¥ & AT ORIFERIN, Aiili Generate A2p{ PCIE TP,

KA TR, FZILEEAEITH Example TFE:
Xxxxx\pcie test\ipcore\pcie test\pnr\example design

FF xxxx K& H OB, JRHI peie test SR T AR [E 1 .

[> pEaf& > E#E(D) > ziguan_demo > pcietest > pcietest O

ipcore > pcietest > pnr > example_design >

B = | T #E == =5

compile
constraint_check
device_map
generate bitstream
ipeore
log
logbackup
place_route
report_timing
synthesize
[datawt
(& impltcl
| multiseed_summary.csv
[panga_pcie top.backup 1.pds
[& pango_peie top.fdc

@pango _pcie top.pds.
|=| pdslog
B runlog

TR IR RS T, B O S B2 TR

1/0 NEME' I/0 DIRECTION LOC BANK VCCIO IOSTANDARD

| S
10 rdlh link up OUTPUT iT16 BANKLG 343 | LVCMOS33
11 ref led OUTEUT Y16 BANKLG 33 LVCMOS33
12 smlh link up OUTEUT ‘RlE BANKLG s | LVCMOS33
13 txd ouTPUT = E21 BANKLS 3.3 LvCMOS33
14 button rst n INEUT K21 BANKLS Sis LVCMOS33
15 perstn TWeOT ala mmmne a3 tvowosas
16 ref clkn THEUT D5 NoBANK
B e —
18 rxd INEUT ‘E22 BANKLS Zie | LVCMOS33

VER, txd Ml rxd Z$ 0. txpl0], txpll], rxpl0], rxpl[l]EENETTH
BAE. fde TR, HARZAWRIES % (UG050008 Titan2 £ %1 FPGA 15 &
AT R %% (HSSTHP) H /485 V1.4) .

LU TS NEE TP e, 1R Example BEHLA AL

@ IP Compiler 2023.2-SP3 - PC| Express (1.0) (on xu)

File View

c H

IP

Project Help

fa X | 20| 2 |@

Project

El [Module

=@
B

B

Il

5@

=@

Memory
1 Distributed RAM

~3mk Distributed ROM (1.4)

(1 DRM

- dmf DEM Based FIFO {1.12)
~Imf DEM Based ROM (1.9}

Multiplier
EEI: Aecocumilator {1.5)

-~ fiF Multiply-Accumnlator (1.5)

Jof Multiply-2dder (1.5)
ok Simple Multiplier ({1.5)
FLL

= (O] System

= Ldec1s
H E”ﬁ#

-

o

Lis 13

(1 Debug

~dnf Distributed FIFO (1.§)

~dmf Distributed Shift Register
~dmf Distributed Simple Dual Por
---- ok Distributed Single Port RAM
~fmf DRM Based Dual Port REM (1.

~Imf DRM Based Simple Dual Port
---- ok DEM Based Single Port REM |

Pathname C:\Users'1:

Instance Name

— IP
Hame PCI Expreas
Version 1.0

Vendor E Shenzhen Pal

Information Datasheet

— Part (PDS settings)

Family Titan2
Device BG2TT0H
Package FEB424

Speed Grade -¢

Configuration

Jutputc

Initializing
Compiling architecture
Loaded 2% devices.
Loaded 101 IPs. (10)

10.4 SCIE &

AP LS flash 19, JEIFRAREA R PCIE FoAi, JPBL. 7T 45
AR, A E] PCIE &4 .
| A penEs S E
IHHE RN =BV EEH)
¢ @ E EmE P EXE
|~ 8 DESKTOP-ORSLCSS
> e IDE ATA/ATAPI 55352
> By =2BE
» [s
> [0 5558
b e REEUETIEE
) G TRRERSRISE
s = FTENEL
> @ B0 (COM] LPT)
> B B
> O 3+,

> [s %
v P Bigs
i PCI AreslE

> [eE

> B iai

> | BE. U
>) EinERigsaE

y § ERETREEE

> P SRS

> im EpvaE

Win FREFRHIZ & RIA]

	1.LED流水灯实验例程
	1.1PG2T70H开发板简介
	1.2实验目的
	1.3实验原理
	1.4实验源码设计
	1.4.1文件头设计
	1.4.2设计module
	1.4.3完整的Module（不含注释）
	1.4.4硬件管脚分配

	1.5实验现象

	2.键控流水灯实验例程
	2.1PG2T70H开发板简介
	2.2实验目的
	2.3实验原理
	2.3.1按键控制模块功能

	2.3.2按键消抖模块
	2.3.3LED控制模块功能

	2.4实验源码设计
	2.4.1顶层文件源码
	2.4.2按键控制模块
	2.4.3按键消抖模块
	2.4.4LED控制模块

	2.5实验现象

	3.串口收发实验例程
	3.1PG2T70H开发板简介
	3.2实验要求
	3.3实验原理
	3.3.1串口原理
	3.3.2串口传输步骤
	3.3.3串口发送字符

	3.4实验源码设计
	3.4.1串口发送模块设计
	3.4.2串口接收模块设计
	3.4.3串口发送控制模块设计
	3.4.4串口实验顶层模块设计

	3.5实验现象

	4_5.HDMI实验例程说明
	4_5.1PG2T70H开发板简介
	4_5.2实验目的
	4_5.3实验原理
	4_5.3.1显示原理
	4_5.3.2HDMI_PHY配置

	4_5.4实验源码设计
	4_5.5实验现象

	6.DDR3读写实验例程
	6.1PG2T70H开发板简介
	6.2实验要求
	6.3DDR3控制器简介
	6.4实验设计
	6.4.1安装DDR3IP核
	6.4.2DDR3读写Example工程

	6.5实验现象

	7_8.光纤通信测试实验例程
	7_8.1PG2T70H开发板简介
	7_8.2实验要求
	7_8.3HSST简介
	7_8.4实验设计
	7_8.4.1安装HSSTIP核
	7_8.4.2光纤通信测试例程

	7_8.5实验现象

	9.以太网传输实验例程
	9.1实验目的
	9.2实验原理
	9.3工程说明
	9.3.1顶层代码讲解
	9.3.2util_gmii_to_rgmii模块讲解
	9.3.3gmii_arbi模块讲解
	9.3.4mac_test模块讲解
	9.3.5power_on_rst模块讲解

	9.5 实验现象

	10.PCIE通信测试实验例程
	10.1实验目的
	10.2实验原理
	10.2.1 PCIE简介

	10.3工程说明
	10.3.1 安装PCIE IP核
	10.3.2 PCIE参考设计例程

	10.4实验现象

